当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=x3+2x2+5x+tex(1)当t=5时,求函数f(x)的单调区间;(2)若存在t∈[0,1],使得对任意x∈[-4,m],不等式f(x)≤...
题目
题型:不详难度:来源:
已知函数f(x)=
x3+2x2+5x+t
ex

(1)当t=5时,求函数f(x)的单调区间;
(2)若存在t∈[0,1],使得对任意x∈[-4,m],不等式f(x)≤x成立,求整数m的最大值.
答案
(1)当t=5时,f(x)=
x3+2x2+5x+5
ex
,∴f′(x)=
-x(x2-x+1)
ex

其中x2-x+1>0,由f′(x)>0,得x<0,由f′(x)<0,得x>0,
所以,f(x)的增区间为(-∞,0),减区间为(0,+∞);
(2)不等式f(x)≤x,即(x3+2x2+5x+t)e-x≤x,即t≤xex-x3-2x2-5x.
转化为存在实数t∈[0,1],使得对任意x∈[-4,m],不等式t≤xex-x3-2x2-5x恒成立,即不等式0≤xex-x3-2x2-5x对于x∈[-4,m]恒成立,
当m≤0时,则有不等式ex-x2-2x-5≤0对于x∈[-4,m]恒成立,
设g(x)=ex-x2-2x-5,则g′(x)=ex-2x-2,又m为整数,
则当m=-1时,则有-4≤x≤-1,此时g′(x)=ex-2x-2>0,
则g(x)在[-4,-1]上为增函数,∴g(x)≤g(-1)<0恒成立.
m=0时,当-1<x≤0时,因为[g′(x)]′=ex-2<0,则g′(x)在(-1,0]上为减函数,
g′(-1)=e-1>0,g′(0)=-1<0,故存在唯一x0∈(-1,0],使得g′(x0)=0,即ex0=2x0+2,
则当-4≤x<x0,有g′(x)>0,;当x0<x≤0时,有g′(x)<0;
故函数g(x)在区间[-4,x0]上为增函数,在区间[x0,0]上为减函数,
则函数g(x)在区间[-4,0]上的最大值为g(x0)=ex0-x02-2x0-5,
ex0=2x0+2,则g(x0)=(2x0+2)-x02-2x0-5=-x02-3<0,
故不等式0≤xex-x3-2x2-5x对于x∈[-4,0]恒成立,
而当m=1时,不等式0≤xex-x3-2x2-5x对于x=1不成立.
综上得,m=0.
核心考点
试题【已知函数f(x)=x3+2x2+5x+tex(1)当t=5时,求函数f(x)的单调区间;(2)若存在t∈[0,1],使得对任意x∈[-4,m],不等式f(x)≤】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知三次函数f(x)=4x3+ax2+bx+c(a,b,c∈R)
(1)如果f(x)是奇函数,过点(2,10)作y=f(x)图象的切线l,若这样的切线有三条,求实数b的取值范围;
(2)当-1≤x≤1时有-1≤f(x)≤1,求a,b,c的所有可能的取值.
题型:不详难度:| 查看答案
A﹑B﹑C是直线l上的三点,向量


OA


OB


OC
满足:


OA
-[y+2f"(1)]•


OB
+ln(x+1)•


OC
=


0

(Ⅰ)求函数y=f(x)的表达式;          
(Ⅱ)若x>0,证明f(x)>
2x
x+2

(Ⅲ)当
1
2
x2≤f(x2)+m2-2bm-3
时,x∈[-1,1]及b∈[-1,1]都恒成立,求实数m的取值范围.
题型:鹰潭一模难度:| 查看答案
已知函数f(x)=(bx+c)lnx在x=
1
e
处取得极值,且在x=1处的切线的斜率为1.
(Ⅰ)求b,c的值及f(x)的单调减区间;
(Ⅱ)设p>0,q>0,g(x)=f(x)+x2,求证:5g(
3p+2q
5
)≤3g(p)+2g(q).
题型:贵阳二模难度:| 查看答案
已知函数f(x)=(a-
1
2
)e2x+x
.(a∈R)
(Ⅰ)若f(x)在区间(-∞,0)上单调递增,求实数a的取值范围;
(Ⅱ)若在区间(0,+∞)上,函数f(x)的图象恒在曲线y=2aex下方,求a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=-2a2lnx+
1
2
x2+ax
(a∈R).
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))的切线方程;
(Ⅱ)讨论函数f(x)的单调性.
题型:延庆县一模难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.