当前位置:高中试题 > 数学试题 > 不等式 > 用数学归纳法证明“1+12+13+…+12n-1<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是(  )A.2k...
题目
题型:不详难度:来源:
用数学归纳法证明“1+
1
2
+
1
3
+…+
1
2n-1
<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是(  )
A.2k-1B.2k-1C.2kD.2k+1
答案
左边的特点:分母逐渐增加1,末项为
1
2n-1

由n=k,末项为
1
2
-1
到n=k+1,末项为
1
2k+1-1
=
1
2k-1+2k
,∴应增加的项数为2k
故选C.
核心考点
试题【用数学归纳法证明“1+12+13+…+12n-1<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是(  )A.2k】;主要考察你对不等式等知识点的理解。[详细]
举一反三
已知f(n)=1+
1
2
+
1
3
+L+
1
n
(n∈N*),用数学归纳法证明f(2n)>
n
2
时,f(2k+1)-f(2k)等于______.
题型:不详难度:| 查看答案
用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是______.
题型:不详难度:| 查看答案
用数学归纳法证明:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
  (n∈N,n≥1)
题型:不详难度:| 查看答案
设f(n)=nn+1,g(n)=(n+1)n,n∈N*
(1)当n=1,2,3,4时,比较f(n)与g(n)的大小.
(2)根据(1)的结果猜测一个一般性结论,并加以证明.
题型:不详难度:| 查看答案
在数列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式(不必证明);(Ⅱ)证明:当λ≠0时,数列{an}不是等比数列;(Ⅲ)当λ=1时,试比较an与n2+1的大小,证明你的结论.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.