当前位置:高中试题 > 数学试题 > 不等式 > 已知f(n)=1+12+13+…+1n,n∈n*,求证:(1)当m<n(m∈N*)时,f(n)-f(m)>n-mn;(2)当n>1时,f(2n)>n+22;(3...
题目
题型:不详难度:来源:
已知f(n)=1+
1
2
+
1
3
+…+
1
n
,n∈n*
,求证:
(1)当m<n(m∈N*)时,f(n)-f(m)>
n-m
n

(2)当n>1时,f(2n)>
n+2
2

(3)对于任意给定的正数M,总能找到一个正整数N0,使得当n>N0时,有f(n)>M.
答案
证明:(1)当m<n时,
f(n)-f(m)=
1
m+1
+
1
m+2
+…+
1
n
1
n
+
1
n
+…+
1
n
=
n-m
n

(2)当n>1时,
f(2n)=1+
1
2
+
1
3
+…+
1
2n
=1+
1
2
+( 
1
3
+
1
4
 )+…+( 
1
2n-1+1
+
1
2n-1+2
+…+
1
2n
 )
>1+
1
2
+
2
4
+…+
2n-1
2n
=1+
n
2
=
n+2
2

(3)∵f(n+1)-f(n)=
1
n+1
>0

∴f(n)在N*上单调递增.
由(2)可知,当n>1时,f(2n)>1+
n
2
n
2
.对任意给定的正数M,设M0是比M大的最小正整数,
N0=2M0,则当n>N0时,f(n)>f(N0)=f(2M0)>
M0
2
=M0>M
核心考点
试题【已知f(n)=1+12+13+…+1n,n∈n*,求证:(1)当m<n(m∈N*)时,f(n)-f(m)>n-mn;(2)当n>1时,f(2n)>n+22;(3】;主要考察你对不等式等知识点的理解。[详细]
举一反三
(附加题)是否存在常数c,使得不等式
x
2x+y+z
+
y
x+2y+z
+
z
x+y+2z
≤c≤
x
x+2y+z
+
y
x+y+2z
+
z
2x+y+z

对于任意正数x,y,z恒成立?试证明你的结论.
题型:不详难度:| 查看答案
某同学在一次研究性学习中发现,以下四个不等式都是正确的:
①(12+42)(92+52)≥(1×9+4×5)2
②[(-6)2)+82]×(22+122)≥[(-6)×2+8×12]2
③[(6.5)2+(8.2)2]×[(2.5)2+(12.5)2]≥[(6.5)×(2.5)+(8.2)×(12.5)]2
④(202+102)(1022+72)≥(20×102+10×7)2
请你观察这四个不等式:
(Ⅰ)猜想出一个一般性的结论(用字母表示);
(Ⅱ)证明你的结论.
题型:不详难度:| 查看答案
设x≥1,y≥1,证明:x+y+
1
xy
1
x
+
1
y
+xy
题型:不详难度:| 查看答案
(用分析法证明)求证:


6
+


7
>2


2
+


5
题型:不详难度:| 查看答案
已知函数f(x)=
mx
2
+
m-2
2x
 (m>0)
.若f(x)≥lnx+m-1在[1,+∞)上恒成立,
(1)求m取值范围;
(2)证明:2ln2+3ln3+…+nlnn
2n3+3n2-5n
12
(n∈N*).
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.