当前位置:高中试题 > 数学试题 > 曲线与方程的关系 > 平面内与两定点A1(-a,0)、A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆或双曲线。(1...
题目
题型:湖北省高考真题难度:来源:
平面内与两定点A1(-a,0)、A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆或双曲线。
(1)求曲线C的方程,并讨论C的形状与m值的关系;
(2)当m=-1时,对应的曲线为C1:对给定的m∈(-1, 0)∪(0,+∞),对应的曲线为C2。设F1、F2是C2的两个焦点。试问:在C1上,是否存在点N,使得△F1NF2的面积S=|m|a2。若存在,求tanF1NF2的值;若不存在,请说明理由。
答案
解:(1)设动点为M,其坐标为(x,y),
当x≠±a时,由条件可得
即mx2-y2=ma2(x≠±a),
又A1(-a,0)、A2(a,0)的坐标满足mx2-y2=ma2
故依题意,曲线C的方程为mx2-y2=ma2
当m<-1时,曲线C的方程为
C是焦点在y轴上的椭圆;
当m=-1时,曲线C的方程为x2+y2=a2,C是圆心在原点的圆;
当-1<m<0时,曲线C的方程为,C是焦点在x轴上的椭圆;
当m>0时,曲线C的方程为,C是焦点在x轴上的双曲线。
(2)由(1)知,当m=-1时,C1的方程为x2+y2=a2
当m∈(-1,0)∪(0,+∞)时,C2的两个焦点分别为
对于给定的m∈(-1,0)∪(0,+∞),C1上存在点N(x0,y0)(y0≠0)使得S=|m|a2的充要条件是

由①得0<|y0|≤a,由②得
,即
存在点N,使S=|m|a2
时,
不存在满足条件的点N。

,-y0
可得

则由
可得
从而
于是由S=|m|a2
可得,即
综上可得:当时,在C1上,存在点N,使得S=|m|·a2,且tanF1NF2=2;
时,在C1上,存在点N,使得S=|m|·a2,且tanF1NF2=-2;
时,在C1上,不存在满足条件的点N。
核心考点
试题【平面内与两定点A1(-a,0)、A2(a,0)(a>0)连线的斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的曲线C可以是圆、椭圆或双曲线。(1】;主要考察你对曲线与方程的关系等知识点的理解。[详细]
举一反三
如图,椭圆Q:(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点。
(1)求点P的轨迹H的方程;
(2)在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤),确定θ的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?
题型:江西省高考真题难度:| 查看答案
如图,椭圆Q:(a>b>0)的右焦点为F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A,B两点,P为线段AB的中点。
(1)求点P的轨迹H的方程;
(2)若在Q的方程中,令a2=1+cosθ+sinθ,b2=sinθ(0<θ≤),设轨迹H的最高点和最低点分别为M和N,当θ为何值时,△MNF为一个正三角形?
题型:江西省高考真题难度:| 查看答案
设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2-y2=1的两条切线PA、PB,切点为A、B,定点M(,0),
(1)求证:三点A、M、B共线;
(2)过点A作直线x-y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程。
题型:江西省高考真题难度:| 查看答案
设0<θ<,曲线x2sinθ+y2cosθ=1和x2cosθ-y2sinθ=1 有4个不同的交点,
(Ⅰ)求θ的取值范围;
(Ⅱ)证明这4个交点共圆,并求圆半径的取值范围。
题型:天津高考真题难度:| 查看答案
已知常数a>0,向量c=(0,a),i=(1,0),经过原点O以ci为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R,试问:是否存在两个定点E、F,使得|PE|+|PF|为定值。若存在,求出E、F的坐标;若不存在,说明理由。
题型:天津高考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.