当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=lnx,g(x)=12x2-2x.(1)设h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求h(x)的最大值;(2)证...
题目
题型:不详难度:来源:
已知函数f(x)=lnx,g(x)=
1
2
x2-2x.
(1)设h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求h(x)的最大值;
(2)证明:当0<b<a时,求证:f(a+b)-f(2b)<
b-a
2a

(3)设k∈Z,当x>1时,不等式k(x-1)<xf(x)+3g′(x)+4恒成立,求k的最大值.
答案
(1)h(x)=f(x+1)-g′(x)=ln(x+1)-x+2,x>-1,
所以 h′(x)=
1
x+1
-1=
-x
x+1

当-1<x<0时,h′(x)>0;当x>0时,h′(x)<0.
因此,h′(x)在(-1,0)上单调递增,在(0,+∞)上单调递减.
因此,当x=0时h(x)取得最大值h(0)=2;
(2)证明:当0<b<a时,-1<
b-a
2a
<0,
由(1)知:当-1<x<0时,h(x)<2,即ln(x+1)<x.
因此,有f(a+b)-f(2a)=ln
b+a
2a
=ln(1+
b-a
2a
)<
b-a
2a

(3)不等式k(x-1)<xf(x)+3g′(x)+4化为k<
xlnx+x
x-1
+2
所以k<
xlnx+x
x-1
+2对任意x>1恒成立.
令g(x)=
xlnx+x
x-1
+2,则g′(x)=
x-lnx-2
(x-1)2

令h(x)=x-lnx-2(x>1),则 h′(x)=1-
1
x
=
x-1
x
>0,
所以函数h(x)在(1,+∞)上单调递增.
因为h(3)=1-ln3<0,h(4)=2-2ln2>0,
所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).
当1<x<x0时,h(x)<0,即g′(x)<0,当x>x0时,h(x)>0,即g′(x)>0,
所以函数g(x)=
xlnx+x
x-1
+2在(1,x0),上单调递减,在(x0,+∞)上单调递增.
所以[g(x)]min=g(x0)=
x0 (1+lnx0)
x0-1
+2=
x0 (1+x0-2)
x0-1
+2=x0+2∈(5,6).
所以k<[g(x)]min=x0+2∈(5,6).
故整数k的最大值是5.
核心考点
试题【已知函数f(x)=lnx,g(x)=12x2-2x.(1)设h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求h(x)的最大值;(2)证】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
曲线f(x)=(x-3)ex,当x∈(2,+∞)时,f(x)>k恒成立,则实数k的取值范围是______.
题型:不详难度:| 查看答案
(理)(1)证明不等式:ln(1+x)<
x


1+x
(x>0).
(2)已知函数f(x)=ln(1+x)-
ax
a+x
在(0,+∞)上单调递增,求实数a的取值范围.
(3)若关于x的不等式
x
1+bx
+
1
ex
≥1在[0,+∞)上恒成立,求实数b的最大值.
题型:黄州区模拟难度:| 查看答案
已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的离心率为


2
2
,且椭圆上的点到两个焦点的距离和为2


2
.斜率为k(k≠0)的直线l过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)试用m表示△MPQ的面积,并求面积的最大值.
题型:东城区一模难度:| 查看答案
如果函数y=x4-8x2+c在[-1,3]上的最小值是-14,那么c=______.
题型:不详难度:| 查看答案
已知函数f(x)=alnx+bx,且f(1)=-1,f′(1)=0,
(1)求f(x);
(2)求f(x)的最大值;
(3)若x>0,y>0,证明:lnx+lny≤
xy+x+y-3
2
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.