当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f1(x)=12x2,f2(x)=alnx(其中a>0).(Ⅰ)求函数f(x)=f1(x)•f2(x)的极值;(Ⅱ)若函数g(x)=f1(x)-f2(x...
题目
题型:不详难度:来源:
已知函数f1(x)=
1
2
x2,f2(x)=alnx(其中a>0).
(Ⅰ)求函数f(x)=f1(x)•f2(x)的极值;
(Ⅱ)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间(
1
e
,e)内有两个零点,求正实数a的取值范围;
(Ⅲ)求证:当x>0时,1nx+
3
4x2
-
1
ex
>0.(说明:e是自然对数的底数,e=2.71828…)
答案
解析(Ⅰ)f(x)=f1(x)•f2(x)=
1
2
x2alnx,
∴f′(x)=axlnx+
1
2
ax=
1
2
ax(2lnx+1),(x>0,a>0),
由f′(x)>0,得x>e
1
2
,由f′(x)<0,得0<x<e
1
2

∴函数f(x)在(0,e
1
2
)上是减函数,在(e
1
2
,+∞)上是增函数,
∴f(x)的极小值为f(e
1
2
)=-
a
4e
,无极大值.
(Ⅱ)函数g(x)=
1
2
x2-alnx+(a-1)x

则g′(x)=x-
a
x
+(a-1)=
x2+(a-1)x-a
x
=
(x+a)(x-1)
x

令g′(x)=0,∵a>0,解得x=1,或x=-a(舍去),
当0<x<1时,g′(x)<0,g(x)在(0,1)上单调递减;
当x>1时,g′(x)>0,g(x)在(1,+∞)上单调递增.
函数g(x)在区间(
1
e
,e)内有两个零点,
只需





g(
1
e
)>0
g(1)<0
g(e)>0
,即





1
2e2
+
a-1
e
+a>0
1
2
+a-1<0
e2
2
+(a-1)e-a>0
,∴





a>
2e-1
2e2+2e
a<
1
2
a>
2e-e2
2e-2
,解得
2e-1
2e2+2e
<x<
1
2

故实数a的取值范围是(
2e-1
2e2+2e
1
2
).
(Ⅲ)问题等价于x2lnx>
x2
ex
-
3
4

由(I)知,f(x)=x2lnx的最小值为-
1
2e

设h(x)=
x2
ex
-
3
4
,h′(x)=-
x(x-2)
ex
得,函数h(x)在(0,2)上增,在(2,+∞)减,
∴h(x)max=h(2)=
4
e2
-
3
4

因-
1
2e
-(
4
e2
-
3
4
)=
3e2-2e-16
4e2
=
(3e-8)(e+2)
4e2
>0,
∴f(x)min>h(x)max
∴x2lnx>
x2
ex
-
3
4
,∴lnx-(
1
ex
-
3
4x2
)>0,
∴lnx+
3
4x2
-
1
ex
>0.
核心考点
试题【已知函数f1(x)=12x2,f2(x)=alnx(其中a>0).(Ⅰ)求函数f(x)=f1(x)•f2(x)的极值;(Ⅱ)若函数g(x)=f1(x)-f2(x】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=
lnx
a
-x

(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与X轴平行,求函数f(x)的单调区间;
(Ⅱ)若对一切正数x,都有f(x)≤-1恒成立,求a的取值集合.
题型:不详难度:| 查看答案
已知函数f(x)=a(lnx-x)(a∈R).
(I)讨论函数f(x)的单调性;
(II)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,函数g(x)=x3+x2[
m
2
+f′(x)]
在区间(2,3)上总存在极值,求实数m的取值范围.
题型:不详难度:| 查看答案
设函数f(x)=xsinx在x=x0处取得极值,则(1+x02)cos2x0的值为(  )
A.0B.1C.2D.3
题型:不详难度:| 查看答案
已知函数f(x)=x3-2x,其中a-1≤x≤a+1,a∈R,设集合M={(m,f(n))|m,n∈[a-1,a+1]|},若f(x)单调递增,则S的最小值为______.
题型:不详难度:| 查看答案
已知函数f(x)=x2-(2a+1)x+alnx.
(Ⅰ)当a=1时,求函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在区间[1,e]上的最小值;
(Ⅲ)设g(x)=(1-a)x,若存在x0∈[
1
e
,e]
,使得f(x0)≥g(x0)成立,求实数a的取值范围.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.