当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 如图,A为椭圆x2a2+y2b2=1(a>b>0)上的一个动点,弦AB,AC分别过焦点F1,F2.当AC垂直于x轴时,恰好|AF1|:|AF2|=3:1.(1)...
题目
题型:不详难度:来源:
如图,A为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的一个动点,弦AB,AC分别过焦点F1,F2.当AC垂直于x轴时,恰好|AF1|:|AF2|=3:1.
(1)求该椭圆的离心率;
(2)设


AF1
=λ1


F1B


AF2
=λ2


F2C
,试判断λ12是否为定值?若是,则求出该定值;若不是,请说明理由.魔方格
答案
(1)当AC垂直于x轴时,|AF1|:|AF2|=3:1,由|AF1|+|AF2|=2a,
|AF1|=
3a
2
|AF2|=
a
2
在Rt△AF1F2中,|AF1|2=|AF2|2+(2c)2
解得 e=


2
2
.…(5分)
(2)由e=


2
2
,则
b
a
=


a2-c2
a
=


1-e2
=


2
2
,b=c.
焦点坐标为F1(-b,0),F2(b,0),则椭圆方程为
x2
2b2
+
y2
b2
=1

化简有x2+2y2=2b2
设A(x0,y0),B(x1,y1),C(x2,y2),
①若直线AC⊥x轴,x0=b,λ2=1,λ1=
3b+2b
b
=5

∴λ1+λ2=6.   …(8分)
②若直线AC的斜率存在,则直线AC方程为y=
y0
x0-b
(x-b)

代入椭圆方程有(3b2-2bx0)y2+2by0(x0-b)y-b2y02=0.
由韦达定理得:y0y2=-
b2y02
3b2-2bx0
,∴y2=-
b2y0
3b2-2bx0
…(10分)
所以λ2=
|AF2|
|F2C|
=
y0
-y2
=
3b-2x0
b

同理可得λ1=
-3b-2x0
-b
=
3b+2x0
b
…(12分)
故λ1+λ2=
6b
b
=6
.综上所述:λ1+λ2是定值6.…(14分)
核心考点
试题【如图,A为椭圆x2a2+y2b2=1(a>b>0)上的一个动点,弦AB,AC分别过焦点F1,F2.当AC垂直于x轴时,恰好|AF1|:|AF2|=3:1.(1)】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
椭圆C1,抛物线C2的焦点均在x轴上,从两条曲线上各取两个点,将其坐标混合记录于下表中:
题型:不详难度:| 查看答案
题型:湛江二模难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x


3
4


6
y-


3


3
-2


2
如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l相交于A、B两点,过A、B分别作l的垂线与圆C过F的切线相交于点P和点Q,则必在以F为焦点,l为准线的同一条抛物线上.
(Ⅰ)建立适当的坐标系,求出该抛物线的方程;
(Ⅱ)对以上结论的反向思考可以得到另一个命题:“若过抛物线焦点F的直线与抛物线相交于P、Q两点,则以PQ为直径的圆一定与抛物线的准线l相切”请问:此命题是正确?试证明你的判断;
(Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为平分依据)魔方格
已知椭圆E的中心在坐标原点O,两个焦点分别为A(-1,0),B(1,0),一个顶点为H(2,0).
(1)求椭圆E的标准方程;
(2)对于x轴上的点P(t,0),椭圆E上存在点M,使得MP⊥MH,求实数t的取值范围.
已知曲线C:xy-2kx+k2=0与直线l:x-y+8=0有唯一公共点,而数列{an}的首项为a1=2k,且当n≥2时点(an-1,an)恒在曲线C上,数列{bn}满足关系bn=
1
an-2

①求k的值;
②求证数列{bn}是等差数列;
③求数列{an}的通项公式.
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


6
3
,短轴的一个端点到右焦点的距离为


3

(1)求椭圆C的方程;
(2)设过点(0,2)直线l与C交于A,B,若∠AOB为锐角,求直线l的斜率的取值范围.