当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 已知椭圆C:+=1的离心率为,左焦点为F(-1,0),(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;...
题目
题型:不详难度:来源:
已知椭圆C:=1的离心率为,左焦点为F(-1,0),
(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得SOPE=SOPG=SOEG
答案
(1) ; (2) 椭圆上不存在满足条件的三点
解析

试题分析:(1) 由已知 可解得 ,即椭圆方程为 。可得 。根据点斜式可得直线即直线方程为,将直线方程和椭圆方程联立消去整理为关于的一元二次方程,可得根与系数的关系。再根据可求得的值,即可得所求直线方程。 (2)根据两点确定一条直线可设两点确定的直线为 l,注意讨论直线的斜率存在与否,用弦长公式可得的长,用点到线的距离公式可得点到线的距离,从而可得三角形面积。同理可得另两个三角形面积,联立方程可得三点横纵坐标的平方,根据三点坐标判断能否与点构成三角形,若能说明存在满足要求的三点否则说明不存在。
试题解析:(1)由题意:椭圆的方程为.
设点,由得直线的方程为
由方程组消去,整理得
可得.
因为
所以


由已知得,解得.
故所求直线的方程为:
(2) 假设存在满足.
不妨设两点确定的直线为 l,
(ⅰ)当直线l的斜率不存在时, 两点关于轴对称,
所以
因为在椭圆上,
所以.①
又因为
所以|,②
由①、②得
此时.
(ⅱ)当直线l的斜率存在时,设直线l的方程为
由题意知,将其代入

其中
,(★)

所以.
因为点到直线l的距离为
所以.

整理得 ,且符合(★)式.
此时
.
综上所述,,结论成立.
同理可得:
解得.
因此只能从中选取,只能从中选取.
因此只能在这四点中选取三个不同点,
而这三点的两两连线中必有一条过原点,
矛盾,
所以椭圆上不存在满足条件的三点
核心考点
试题【已知椭圆C:+=1的离心率为,左焦点为F(-1,0),(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,在第一和第四象限的交点分别为.
(1)若是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率.
题型:不详难度:| 查看答案
已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点).
(1)指出,并求的关系式();
(2)求)的通项公式,并指出点列,向哪一点无限接近?说明理由;
(3)令,数列的前项和为,试比较的大小,并证明你的结论.
题型:不详难度:| 查看答案
已知椭圆的离心率,且直线是抛物线的一条切线.
(1)求椭圆的方程;
(2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
题型:不详难度:| 查看答案
已知椭圆的两个焦点分别为,离心率.
(1)求椭圆的方程;
(2)设直线)与椭圆交于两点,线段 的垂直平分线交轴于点,当变化时,求面积的最大值.
题型:不详难度:| 查看答案
已知椭圆的右焦点为,短轴的一个端点的距离等于焦距.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于不同的两点,是否存在直线,使得△与△的面积比值为?若存在,求出直线的方程;若不存在,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.