当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 给定椭圆C:=1(a>b>0),称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(,0),其短轴的一个端点到点F的距离为.(1...
题目
题型:不详难度:来源:
给定椭圆C:=1(a>b>0),称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(,0),其短轴的一个端点到点F的距离为.
(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B、D是椭圆C上的两相异点,且BD⊥x轴,求·的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.
答案
(1)x2+y2=4(2)[0,7+4)(3)对于椭圆C上的任意点P,都有l1⊥l2.
解析
(1)由题意知c=,且a=,可得b=1,故椭圆C的方程为+y2=1,其“准圆”方程为x2+y2=4.
(2)由题意,可设B(m,n),D(m,-n)(-<m<),则有+n2=1,又A点坐标为(2,0),故=(m-2,n),=(m-2,-n),故·=(m-2)2-n2=m2-4m+4-m2-4m+3=,又-<m<,故∈[0,7+4],所以·的取值范围是[0,7+4).
(3)设P(s,t),则s2+t2=4.当s=±时,t=±1,则l1,l2其中之一斜率不存在,另一斜率为0,显然有l1⊥l2.当s≠±时,设过P(s,t)且与椭圆有一个公共点的直线l的斜率为k,则l的方程为y-t=k(x-s),代入椭圆C方程可得x2+3[kx+(t-ks)]2=3,即(3k2+1)x2+6k(t-ks)x+3(t-ks)2-3=0,由Δ=36k2(t-ks)2-4(3k2+1)[3(t-ks)2-3]=0,可得(3-s2)k2+2stk+1-t2=0,其中3-s2=0,设l1,l2的斜率分别为k1,k2,则k1,k2是上述方程的两个根,故k1k2=-1,即l1⊥l2.综上可知,对于椭圆C上的任意点P,都有l1⊥l2.
核心考点
试题【给定椭圆C:=1(a>b>0),称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(,0),其短轴的一个端点到点F的距离为.(1】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.

(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.
题型:不详难度:| 查看答案
如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

题型:不详难度:| 查看答案
已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A、B.
(1)若AB=,求k的值;
(2)求证:不论k取何值,以AB为直径的圆恒过点M.
题型:不详难度:| 查看答案
已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,

过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
题型:不详难度:| 查看答案
以双曲线-3x2+y2=12的焦点为顶点,顶点为焦点的椭圆的方程是________.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.