当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=xlnx.(I)若函数g(x)=f(x)+ax在区间[e2,+∞]上为增函数,求a的取值范围;(II)若对任意x∈(0,+∞),f(x)≥-x...
题目
题型:不详难度:来源:
已知函数f(x)=xlnx.
(I)若函数g(x)=f(x)+ax在区间[e2,+∞]上为增函数,求a的取值范围;
(II)若对任意x∈(0,+∞),f(x)≥
-x2+mx-3
2
恒成立,求实数m的最大值.
答案
(I)由题意得,g′(x)=f′(x)+a=lnx+a+1,
∵函数g(x)在区间[e2,+∞)上为增函数,
∴当x∈[e2,+∞)时,g′(x)≥0,即lnx+a+1≥0在[e2,+∞)上恒成立,
∴a≥-1-lnx,
又当x∈[e2,+∞)时,lnx∈[2,+∞),
∴-1-lnx∈(-∞,-3],
∴a≥-3.
(II)因为2f(x)≥-x2+mx-3,即mx≤2x•lnx+3+x2
又x>0,所以m≤
2x•lnx+x2+3
x
,令h(x)=
2x•lnx+x2+3
x

h′(x)=
(2xlnx+x2+3)x′-(2xlnx+x2+3)•x′
x2
=
2x+x2-3
x2

令h′(x)=0解得:x=1或x=-3(舍),
当x∈(0,1)时,h′(x)<0,函数h(x)在(0,1)上单调递减,
当x∈(1,+∞)时,h′(x)>0,函数h(x)在(1,+∞)上单调递增,
所以h(x)min=h(1)=4,
   因为对任意x∈(0,+∞),f(x)≥
-x2+mx-3
2
恒成立,
所以m≤h(x)min=4,即m的最大值为4.
核心考点
试题【已知函数f(x)=xlnx.(I)若函数g(x)=f(x)+ax在区间[e2,+∞]上为增函数,求a的取值范围;(II)若对任意x∈(0,+∞),f(x)≥-x】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
函数f(x)=sin2x在(0,π)上的递减区间是 ______.
题型:不详难度:| 查看答案
设函数f(x)=-
1
3
x3+2ax2-3a2x+b,0<a<1.
(1)求函数f(x)的单调区间、极值;
(2)若x∈[0,3a],试求函数f(x)的最值.
题型:不详难度:| 查看答案
设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点.
(1)若x1=-1,x2=2,求函数f(x)的解析式;
(2)若|x1|+|x2|=2


2
,求实数b的最大值;
(3)函数g(x)=f"(x)-a(x-x1)若x1<x<x2,且x2=a,求函数g(x)在(x1,x2)内的最小值.(用a表示)
题型:不详难度:| 查看答案
已知函数f(x)=
lna+lnx
x
在[1,+∞)上为减函数,则a的取值范围为______.
题型:不详难度:| 查看答案
设函数f(x)=ax2+2x+blnx在x=1和x=2时取得极值.(ln2≈0.7)
(1)求a、b的值;
(2)求函数f(x)在[
1
2
,2]
上的最大值和最小值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.