当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知f(x)=2x-ax2+2(x∈R)(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若f(x)在区间[-1,1]上是增函数,求实...
题目
题型:不详难度:来源:
已知f(x)=
2x-a
x2+2
(x∈R)
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若f(x)在区间[-1,1]上是增函数,求实数a的取值范围A;
(3)在(2)的条件下,设关于x的方程f(x)=
1
x
的两个根为x1、x2,若对任意a∈A,t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求m的取值范围.
答案
(1)∵f(x)=
2x-a
x2+2
(x∈R),
∴a=1时,f(x)=
2x-1
x2+2

f=
-2(x2-x-2)
(x2+2)2
 

∴f′(2)=0,f(2)=
4-1
4+2
=
1
2

∴过(2,f(2))切线方程为y=
1
2

(2)∵f(x)=
2x-a
x2+2
(x∈R),
f(x)=
4+2ax-2x2
(x2+2)2
=
-2(x2-ax-2)
(x2+2)2

∵f(x)在区间[-1,1]上是增函数,
∴f′(x)≥0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立.
设g(x)=x2-ax-2,则问题等价于





g(1)=1-a-2≤0
g(-1)=1+a-2≤0
,解得-1≤≤1.
∴A=[-1,1].
(3)由
2x-a
x2+2
=
1
x
,得x2-ax-2=0,
∵△=a2+8>0,
∴x1,x2是方程x2-ax-2=0的两个非零实数根,
∴x1+x2=a,x1x2=-2,
从而|x1-x2|=


a2+8
≤3

∴不等式m2+tm+1≥|x1-x2|对任意x∈A及t∈[-1,1]恒成立.
∴m2+tm+1≥3对任意t∈[-1,1]恒成立,
∴m2+tm-2≥0对任意t∈[-1,1]恒成立,
设g(t)=m2+tm-2=mt+(m2-2),则问题等价于:





g(-1)=m2-m-2>0
g(1)=m2+m-2≥0

解得m≤-2,或m≥2.
∴m的取值范围是(-∞,-2]∪[2,+∞).
核心考点
试题【已知f(x)=2x-ax2+2(x∈R)(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若f(x)在区间[-1,1]上是增函数,求实】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
设函数f(x)=x-
ln(1+x)
1+x

(1)令N(x)=(1+x)2-1+ln(1+x),判断并证明N(x)在(-1,+∞)上的单调性,并求N(0);
(2)求f(x)在定义域上的最小值;
(3)是否存在实数m,n满足0≤m<n,使得f(x)在区间[m,n]上的值域也为[m,n]?
(参考公式:[ln(1+x)′]=
1
1+x
题型:汕头一模难度:| 查看答案
已知函数f(x)=a(x-
1
x
)-lnx

(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=
e
x
,若在[1,e]上至少存在一点x0,使得f(x0)≥g(x0)成立,求实数a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=ex-ax-1,(a∈R).
(1)当a=2时,求f(x)的单调区间与最值;
(2)若f(x)在定义域R内单调递增,求a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=
1
2
x2+alnx(a∈R)

(1)若a=-1,求f(x)的单调递增区间;
(2)当x>1时,f(x)>lnx恒成立,求实数a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=x3+bx2+cx+d(b≠0)在x=0处取到极值2.
(Ⅰ)分别求c,d的值;
(Ⅱ)试研究曲线y=f(x)的所有切线中与直线y=
1
b
x+1
的垂直的条数.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.