当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知曲线C:f(x)=x2,C上的点A0,An的横坐标分别为1和an(n∈N*),且a1=5,数列{xn}满足xn+1=t•f(xn-1)+1(t>0且t≠12...
题目
题型:解答题难度:一般来源:不详
已知曲线C:f(x)=x2,C上的点A0,An的横坐标分别为1和an(n∈N*),且a1=5,数列{xn}满足xn+1=t•f(xn-1)+1(t>0且t≠
1
2
,t≠1)
,设区间Dn=[1,an](an>1),当x∈Dn时,曲线C上存在点Pn(xn,f(xn)),使得点Pn处的切线与直线A0An平行.
(1)证明:{logt(xn-1)+1}是等比数列;
(2)当Dn+1⊊Dn对一切n∈N*恒成立时,求t的取值范围;
(3)记数列{an}的前n项和为Sn,当t=
1
4
时,试比较Sn与n+7的大小,并证明你的结论.
答案
(1)∵由线在点Pn的切线与直线AAn平行,
2xn=
an2-1
an-1
,即xn=
an+1
2

由xn+1=tf(xn+1-1)+1,得xn+1-1=t(xn-1)2
∴logt(xn+1-1)=1+2logt(xn-1),
即logt(xn+1-1)+1=2[logt(xn-1)+1],
∴{logt(xn-1)+1}是首项为logt2+1,公比为2的等比数列.
(2)由(1)得logt(xn-1)+1=(logt2+1)•2n-1
xn=1+
1
t
(2t)2n-1

从而an=2xn-1=1+
2
t
(2t)2n-1

由Dn+1⊊Dn对一切n∈N*恒成立,
得an+1<an
(2t)2n(2t)2n-1
∴0<2t<1,
0<t<
1
2

(3)当t=
1
4
时,an=1+8×(
1
2
)
2n-1

Sn=n+8[
1
2
+(
1
2
)
2
+(
1
2
)
4
+…+(
1
2
)
2n-1
]

当n≤3时,2n-1≤n+1;
当n≥4时,2n-1>n+1,
∴当n≤3时,Sn≤n+8[
1
2
+(
1
2
)
2
+(
1
2
)
4
]=n+
13
2
<n+7.
当n≥4时,Snn+8[
1
2
+(
1
2
)
2
+(
1
2
)
3
+(
1
2
)
4
+…+
(
1
2
)
n+1
]

=n+7-(
1
2
)
n-2

<n+7.
综上所述,对任意的n∈N*,都有Sn<n+7.
核心考点
试题【已知曲线C:f(x)=x2,C上的点A0,An的横坐标分别为1和an(n∈N*),且a1=5,数列{xn}满足xn+1=t•f(xn-1)+1(t>0且t≠12】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
若函数f(x)(f(x)≠0)为奇函数,则必有(  )
A.f(x)•f(-x)>0B.f(x)•f(-x)<0C.f(x)<f(-x)D.f(x)>f(-x)
题型:单选题难度:一般| 查看答案
已知函数f(x)=lnx-
a
x
,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(Ⅲ)设函数h(x)=x2-mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
已知定义域为R的函数f(x)=
b-2x
1+2x
是奇函数
(1)求b的值;
(2)试讨论函数f(x)的单调性;
(3)若对∀t∈R,不等式f(t-t2)+f(t-k)>0恒成立,求k的取值范围.
题型:解答题难度:一般| 查看答案
对于定义域是R的任意奇函数f(x)有(  )
A.f(x)-f(-x)=0B.f(x)+f(-x)=0C.f(x)•f(-x)=0D.f(0)≠0
题型:单选题难度:简单| 查看答案
已知函数f(x)=(x-2a)(x-a-1).
(I)当a>1时,解关于x的不等式f(x)≤0;
(II)若∀x∈(5,7),不等式f(x)≤0恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.