当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图,在四棱锥中,平面平面.(1)证明:平面;(2)求二面角的大小...
题目
题型:不详难度:来源:
如图,在四棱锥中,平面平面.
(1)证明:平面;
(2)求二面角的大小

答案
(1)详见解析;(2)二面角的大小是
解析

试题分析:(1)求证:平面,证明线面垂直,先证线线垂直,即证线和平面内两条相交直线垂直,由已知可得,只需证明,或,由已知平面平面,只需证明,就得平面,即,而由已知,在直角梯形中,易求,从而满足,即得,问题得证;(2)求二面角的大小,可用传统方法,也可用向量法,用传统方法,关键是找二面角的平面角,可利用三垂线定理来找,但本题不存在利用三垂线定理的条件,因此利用垂面法,即作,与交于点,过点,与交于点,连结,由(1)知,,则,,所以是二面角的平面角,求出的三条边,利用余弦定理,即可求出二面角的大小,用向量法,首先建立空间坐标系,先找三条两两垂直的直线作为坐标轴,观察几何图形可知,以为原点,分别以射线轴的正半轴,建立空间直角坐标系,写出个点坐标,设出设平面的法向量为,平面的法向量为,求出它们的一个法向量,利用法向量的夹角与二面角的关系,即可求出二面角的大小.
(1)在直角梯形中,由得,,由,则,即,又平面平面,从而平面,所以,又,从而平面
(2)方法一:作,与交于点,过点,与交于点,连结,由(1)知,,则,,所以是二面角的平面角,在直角梯形中,由,得,又平面平面,得平面,从而,,由于平面,得:,在中,由,得

中,,得,在中,,得,从而,在中,利用余弦定理分别可得,在中,,所以,即二面角的大小是
方法二:以为原点,分别以射线轴的正半轴,建立空间直角坐标系如图所示,由题意可知各点坐标如下:,设平面的法向量为,平面的法向量为,可算得,由得,,可取,由得,,可取,于是,由题意可知,所求二面角是锐角,故二面角的大小是

点评:本题主要考查空间点,线,面位置关系,二面角等基础知识,空间向量的应用 ,同时考查空间想象能力,与推理论证,运算求解能力.
核心考点
试题【如图,在四棱锥中,平面平面.(1)证明:平面;(2)求二面角的大小】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
如图,四棱锥中,底面是以为中心的菱形,底面上一点,且.
(1)求的长;
(2)求二面角的正弦值.

题型:不详难度:| 查看答案
已知向量=(2,4,5),=(3,x,y),若,则(  )
A.x=6,y=15B.x=3,y=
C.x=3,y=15D.x=6,y=

题型:不详难度:| 查看答案
已知正方体ABCD-A1B1C1D1中,点E为上底面A1C1的中心,若+x+y,则x、y的值分别为(  )
A.x=1,y=1B.x=1,y=
C.x=,y=D.x=,y=1

题型:不详难度:| 查看答案
已知平面α内有一个点A(2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是(  )
A.(1,-1,1)B.(1,3,)
C.(1,-3,)D.(-1,3,-)

题型:不详难度:| 查看答案
△ABC的顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD等于(  )
A.5B.C.4D.2

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.