当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 如图,,是双曲线:与椭圆的公共焦点,点是,在第一象限的公共点.若|F1F2|=|F1A|,则的离心率是(    ).A.B.C.D....
题目
题型:不详难度:来源:
如图,是双曲线与椭圆的公共焦点,点在第一象限的公共点.若|F1F2|=|F1A|,则的离心率是(    ).
A.B.C.D.

答案

解析

试题分析:由题意知,
的离心率是,故选
核心考点
试题【如图,,是双曲线:与椭圆的公共焦点,点是,在第一象限的公共点.若|F1F2|=|F1A|,则的离心率是(    ).A.B.C.D.】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知平面上的动点P(x,y)及两个定点A(-2,0),B(2,0),直线PA,PB的斜率分别为K1,K2且K1K2=-
(1).求动点P的轨迹C方程;
(2).设直线L:y=kx+m与曲线C交于不同两点,M,N,当OM⊥ON时,求O点到直线L的距离(O为坐标原点)
题型:不详难度:| 查看答案
已知椭圆的左焦点为与过原点的直线相交于两点,连接,若,则椭圆的离心率
A.B.C.D.

题型:不详难度:| 查看答案
(理)已知点是平面直角坐标系上的一个动点,点到直线的距离等于点到点的距离的2倍.记动点的轨迹为曲线.
(1)求曲线的方程;
(2)斜率为的直线与曲线交于两个不同点,若直线不过点,设直线的斜率分别为,求的数值;
(3)试问:是否存在一个定圆,与以动点为圆心,以为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.
题型:不详难度:| 查看答案
巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.
题型:不详难度:| 查看答案
过椭圆的一个焦点作垂直于实轴的弦是另一焦点,若∠,则椭圆的离心率等于(    )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.