当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ...
题目
题型:不详难度:来源:
已知函数f(x)=
lnx+k
ex
(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)是f(x)的导函数.证明:对任意x>0,g(x)<1+e-2
答案
(Ⅰ)f′(x)=
1
x
-lnx-k
ex

依题意,∵曲线y=f(x) 在点(1,f(1))处的切线与x轴平行,
f′(1)=
1-k
e
=0,
∴k=1为所求.
(Ⅱ)k=1时,f′(x)=
1
x
-lnx-1
ex
(x>0)
记h(x)=
1
x
-lnx-1,函数只有一个零点1,且当x>1时,h(x)<0,当0<x<1时,h(x)>0,
∴当x>1时,f′(x)<0,∴原函数在(1,+∞)上为减函数;当0<x<1时,f′(x)>0,
∴原函数在(0,1)上为增函数.
∴函数f(x)的增区间为(0,1),减区间为(1,+∞).
(Ⅲ)证明:g(x)=(x2+x)f′(x)=
1+x
ex
(1-xlnx-x),先研究1-xlnx-x,再研究
1+x
ex

①记r(x)=1-xlnx-x,x>0,∴r′(x)=-lnx-2,令r′(x)=0,得x=e-2
当x∈(0,e-2)时,r′(x)>0,r(x)单增;
当x∈(e-2,+∞)时,r′(x)<0,r(x)单减.
∴r(x)max=r(e-2)=1+e-2,即1-xlnx-x≤1+e-2
②记s(x)=
1+x
ex
,x>0,
s′(x)=-
x
ex
<0,∴s(x)在(0,+∞)单减,
∴s(x)<s(0)=1,即
1+x
ex
<1.
综①、②知,g(x))=
1+x
ex
(1-xlnx-x)≤(
1+x
ex
)(1+e-2)<1+e-2
核心考点
试题【已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
曲线y=x3-2x+1在点(1,2)处的切线方程是(  )
A.y=x+1B.y=-x+1C.y=2x-2D.y=-2x+2
题型:不详难度:| 查看答案
曲线y=-x3+x2在点(1,0)处的切线的倾斜角为(  )
A.45°B.60°C.120°D.135°
题型:不详难度:| 查看答案
曲线y=x2-x上点A(2,2)处的切线与直线2x-y+5=0的夹角的正切值为______.
题型:不详难度:| 查看答案
f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N+).
(1)请写出fn(x)的表达式(不需证明);
(2)求fn(x)的极小值;
(3)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,求a-b的最小值.
题型:不详难度:| 查看答案
已知函数f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R,若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.