当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 设f(x)=lnx,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与g(1x)的大小关系;(Ⅲ)求a的取值范围,使得g(...
题目
题型:陕西难度:来源:
设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与g(
1
x
)
的大小关系;
(Ⅲ)求a的取值范围,使得g(a)-g(x)<
1
a
对任意x>0成立.
答案
(Ⅰ)由题设知f(x)=lnx,g(x)=lnx+
1
x

∴g"(x)=
x-1
x2
,令g′(x)=0得x=1,
当x∈(0,1)时,g′(x)<0,故(0,1)是g(x)的单调减区间.
当x∈(1,+∞)时,g′(x)>0,故(1,+∞)是g(x)的单调递增区间,
因此,x=1是g(x)的唯一值点,且为极小值点,
从而是最小值点,所以最小值为g(1)=1.
(II)g(
1
x
)=-Inx+x

h(x)=g(x)-g(
1
x
)=2lnx-x+
1
x
,则h"(x)=-
(x-1)2
x2

当x=1时,h(1)=0,即g(x)=g(
1
x
)

当x∈(0,1)∪(1,+∞)时,h′(1)=0,
因此,h(x)在(0,+∞)内单调递减,
当0<x<1时,h(x)>h(1)=0,即g(x)>g(
1
x
)

当x>1时,h(x)<h(1)=0,即g(x)<g(
1
x
)

(III)由(I)知g(x)的最小值为1,
所以,g(a)-g(x)<
1
a
,对任意x>0,成立⇔g(a)-1<
1
a

即Ina<1,从而得0<a<e.
核心考点
试题【设f(x)=lnx,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与g(1x)的大小关系;(Ⅲ)求a的取值范围,使得g(】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
设函数f(x)=a2lnx-x2+ax,a>0.
(Ⅰ)求f(x)的单调区间
(Ⅱ)求所有的实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.
注:e为自然对数的底数.
题型:浙江难度:| 查看答案
已知函数f(x)=ln(2-x)+a(x-2)(a∈R,e是自然对数的底)
(1)求f(x)的单调区间;
(2)当a>0时,若方程f(x)-b=0在区间[2-
e
a
,2)
上有两个不同的实根,求证:1-e-lna≤b<-1-lna.
题型:不详难度:| 查看答案
已知函数f(x)=
mx
x2+n
(m,n∈R)
在x=1处取得极值2,
(1)求f(x)的解析式;
(2)设A是曲线y=f(x)上除原点O外的任意一点,过OA的中点且垂直于x轴的直线交曲线于点B,试问:是否存在这样的点A,使得曲线在点B处的切线与OA平行?若存在,求出点A的坐标;若不存在,说明理由;
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R的,总存在x2∈[-1,1],使得g(x2)≤f(x1),求实数a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=ax2+
1
x
-2lnx
(x>0).
(Ⅰ)若f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)若定义在区间D上的函数y=g(x)对于区间D上的任意两个值x1、x2,总有不等式
1
2
[g(x1)+g(x2)]≥g(
x1+x2
2
)
成立,则称函数y=g(x)为区间D上的“凸函数”.试证当a≥0时,f(x)为“凸函数”.
题型:石景山区一模难度:| 查看答案
已知函数f(x)=
1-x
ax
+lnx

(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(Ⅱ)当a=1时,求f(x)在[
1
2
,2]
上的最大值和最小值.
题型:日照模拟难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.