当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 函数f(x)=11+a•2bx的定义域为R,且limn→∞f(-n)=0(n∈N*)(Ⅰ)求证:a>0,b<0;(Ⅱ)若f(1)=45,且f(x)在[0,1]上...
题目
题型:解答题难度:一般来源:不详
函数f(x)=
1
1+a•2bx
的定义域为R,且
lim
n→∞
f(-n)=0(n∈N*)
(Ⅰ)求证:a>0,b<0;
(Ⅱ)若f(1)=
4
5
,且f(x)在[0,1]上的最小值为
1
2
,试求f(x)的解析式;
(Ⅲ)在(Ⅱ)的条件下记Sn=f(1)+f(2)+…+f(n)(n∈N),试比较Sn与n+
1
2n+1
+
1
2
(n∈N*)
的大小并证明你的结论.
答案
解(Ⅰ)∵f(x)定义域为R,∴1+a•2bx≠0,即a≠-2-bx而x∈R,∴a≥0.
若a=0,f(x)=1与
lim
n→∞
f(-n)=0矛盾,∴a>0,∴
lim
n→∞
f(-n)=
lim
n→∞
1
1+a•2-bx
=





1(0<2-b<1)
1
1+a
(2-b=1)
0(2-b>1)
∴2-b>1即b<0,故a>0,b<0.
(Ⅱ)由(Ⅰ)知f(x)在[0,1]上为增函数,
∴f(0)=
1
2
,即
1
1+a
=
1
2
,∴a=1,f(1)=
1
1+a•2b
=
4
5

∴2b=
1
4
,∴b=-2,∴f(x)=
1
1+2-2x
=
4x
1+4x
=1-
1
1+4x

(Ⅲ)当k∈N*时,Sn<n+
1
2n+1
+
1
2
,证明如下:
f(k)=1-
1
1-4k
<1,∴f(1)+f(2)+f(3)++f(n)<n
而n+
1
2n+1
+
1
2
>n,∴k∈N*时,Sn<n+
1
2n+1
+
1
2
核心考点
试题【函数f(x)=11+a•2bx的定义域为R,且limn→∞f(-n)=0(n∈N*)(Ⅰ)求证:a>0,b<0;(Ⅱ)若f(1)=45,且f(x)在[0,1]上】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数y=f(x)是定义在区间[-
3
2
3
2
]上的偶函数,且x∈[0,
3
2
]时,f(x)=-x2-x+5.
(1)求函数f(x)的解析式;
(2)若矩形ABCD的顶点A,B在函数y=f(x)的图象上,顶点C,D在x轴上,求矩形ABCD面积的最大值.
题型:解答题难度:一般| 查看答案
已知定义域为[0,1]的函数f(x)同时满足:
①对于任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,则有f (x1+x2)≥f (x1)+f (x2).
(1)试求f(0)的值;
(2)试求函数f(x)的最大值;
(3)试证明:当x∈(
1
2n
1
2n-1
]
,n∈N+时,f(x)<2x.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
log2x-1
log2x+1
,若f(x1)+f(2x2)=1,(其中x1,x2均大于2),则f(x1x2)的最小值为(  )
A.
5-


5
4
B.
4
5
C.
2
3
D.
3
5
题型:单选题难度:简单| 查看答案
函数f(x)在(0,2)上是减函数,且关于x的函数y=f(x+2)是偶函数,则(  )
A.f(
1
2
)<f(
5
2
)<f(3)
B.f(3)<f(
5
2
)<f(
1
2
)
C.f(3)<f(
1
2
)<f(
5
2
)
D.f(
5
2
)<f(3)<f(
1
2
)
题型:单选题难度:一般| 查看答案
已知函数f(x)=





ax(x<0)
(a-3)x+4a(x≥0)
满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为(  )
A.(0,
1
4
]
B.(0,1)C.[
1
4
,1)
D.(0,3)
题型:单选题难度:简单| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.