当前位置: > 设A是一个实方阵,证明:存在正交矩阵 S,T,以及上三角 P,Q ,使得 A=SP=QT...
题目
设A是一个实方阵,证明:存在正交矩阵 S,T,以及上三角 P,Q ,使得 A=SP=QT
如题,求证

提问时间:2020-11-21

答案
感觉证得有些勉强,凑合着看吧,期待高人完美解答:小写t是转置实方阵A=SP是显然的,只需证SP=QT由S T是正交矩阵,知StS=SSt=E=TtT=TTt那么SP=SPTtT要让SP=QT只需让SPTt为上三角,那么取Q=SPTt即可反证:假设不存在正交矩阵...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.