当前位置:高中试题 > 数学试题 > 数列与函数的关系 > 已知函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=12.(1)当x∈N+时,求f(n)的表达式;(2)设an=nf(n) (n∈N+),求证:a...
题目
题型:不详难度:来源:
已知函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=
1
2

(1)当x∈N+时,求f(n)的表达式;
(2)设an=nf(n)
 (n∈N+)
,求证:a1+a2+…+an<2;
(3)设bn=
nf(n+1)
f(n)
 &(n∈N+),Sn=b1
+b2+…+bn
,求
lim
n→∞
(
1
S1
+
1
S2
+…+
1
Sn
)
答案
(1)令x=n,y=1,得到
f(n+1)=f(n)•f(1)=
1
2
f(n)

∵f(n+1)=
1
2
f(n),f(1)=
1
2

∴{f(n)}是首项为
1
2
,公比为
1
2
的等比数列,
由等比数列前n项和公式,知
∴f(n)=
1
2 n

(2)∵f(n)=
1
2 n
,∴an=nf(n)=n×
1
2 n
=
n
2n

设Sn=a1+a2+…+an
则Sn=
1
2
+
2
22
+…+
n-1
2 n-1
+
n
2n

两边同乘
1
2

1
2
Sn=
1
22
+
2
2 3
+…+
n-1
2 n
+
n
2 n+1

错位相减,得
1
2
Sn=
1
2
+
1
2 2
+
1
23
+…+
1
 n
-
n
2 n+1

=
1
2
(1-
1
2 n
)
1-
1
2
-
n
2 n+1

=1-
1
2 n
-
n
2 n+1

Sn=2-
1
2 n-1
-
n
2 n+1
<2

所以a1+a2+…+an<2.
(3)∵bn=
nf(n+1)
f(n)
=
1
2 n+1
1
2 n
=
n
2

∴Sn=b1+b2+b3+…+bn
=
1
2
+
2
2
+
3
2
+…+
n
2

=
n(n+1)
4

1
S1
+
1
S2
+
1
S3
+…+
1
Sn

=4[(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
 )+…+
(
1
n
-
1
n+1
 )]

=4(1-
1
n+1
),
lim
n→∞
(
1
S1
+
1
S2
+…+
1
Sn
)
=
lim
n→∞
4(1-
1
n+1
)
=4.
核心考点
试题【已知函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=12.(1)当x∈N+时,求f(n)的表达式;(2)设an=nf(n) (n∈N+),求证:a】;主要考察你对数列与函数的关系等知识点的理解。[详细]
举一反三
设Mn={(十进制)n位纯小数0.
.
a1a2an
|ai只取0或1(i=1,2,…,n-1),an=1},Tn是Mn中元素的个数,Sn是Mn中所有元素的和,则
lim
n→∞
Sn
Tn
=______.
题型:不详难度:| 查看答案
已知数列{f(n)}满足nf2(n)-(n-1)f2(n-1)+f(n)f(n-1)=0且f(n)>0
(1)求{f(n)}的通项公式;
(2)令an=31/f(n),bn=4/f(n)+1(n∈N*),若在数列{an}的前100项中,任取一项an,问an
时也在数列是的某项的概率为多少?为什么?
(3)若将(2)中的前100项推广到前n项(n∈N*),且记上述概率为Pn,试猜测
lim
n→∞
Pn
(不必证明).
题型:不详难度:| 查看答案
an=





1
n
+2,(n<1000)
2n
2n-1
,(n≥1000)
,则
lim
n→∞
an
=______.
题型:不详难度:| 查看答案
已知点O(0,0)、Q0(0,1)和点R0(3,1),记Q0R0的中点为P1,取Q0P1和P1R0中的一条,记其端点为Q1、R1,使之满足(|OQ1|-2)(|OR1|-2)<0,记Q1R1的中点为P2,取Q1P2和P2R1中的一条,记其端点为Q2、R2,使之满足(|OQ2|-2)(|OR2|-2)<0.依次下去,得到P1,P2,…,Pn,…,则
lim
n→∞
|Q0Pn|
=______.
题型:上海难度:| 查看答案
设常数a>0,(ax2+
1


x
)4
展开式中x3的系数为
3
2
,则
lim
n→∞
(a+a2+…+an)
=______.
题型:安徽难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.