当前位置:高中试题 > 数学试题 > 空间向量的基本概念 > 如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平...
题目
题型:不详难度:来源:
如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.

求证:(1)CM∥平面PAD.
(2)平面PAB⊥平面PAD.
答案
见解析
解析
建立空间直角坐标系.(1)可证明与平面PAD的法向量垂直;也可将分解为平面PAD内的两个向量的线性组合,利用共面向量定理证明.
(2)取AP中点E,利用向量证明BE⊥平面PAD即可.
【证明】由题意可知:
以C为坐标原点,CB所在直线为x轴,CD所在直线为y轴,CP所在直线为z轴建立如图所示的空间直角坐标系Cxyz.

∵PC⊥平面ABCD,
∴∠PBC为PB与平面ABCD所成的角,
∴∠PBC=30°.
∵PC=2,∴BC=2,PB=4.
∴D(0,1,0),B(2,0,0),
A(2,4,0),P(0,0,2),M(,0,),
=(0,-1,2),=(2,3,0),
=(,0,).
(1)方法一:令n=(x,y,z)为平面PAD的一个法向量,则

令y=2,得n=(-,2,1).
∵n·=-×+2×0+1×=0,
∴n⊥.又CM⊄平面PAD,
∴CM∥平面PAD.
方法二:∵=(0,1,-2),=(2,4,-2),
假设∥平面PAD,
则存在x0,y0使=x0+y0,则
方程组的解为
=-+.
由共面向量定理知,共面,故假设成立.
又∵CM⊄平面PAD,
∴CM∥平面PAD.
(2)取AP的中点E,连接BE,则E(,2,1),
=(-,2,1).
易知PB=AB,∴BE⊥PA.
又∵·=(-,2,1)·(2,3,0)=0,
,∴BE⊥DA.又PA∩DA=A,
∴BE⊥平面PAD.
又∵BE⊂平面PAB,
∴平面PAB⊥平面PAD.
核心考点
试题【如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平】;主要考察你对空间向量的基本概念等知识点的理解。[详细]
举一反三
已知空间三点A(1,1,1),B(-1,0, 4),C(2,-2,3),则的夹角θ的大小是(  )
A.B.πC.D.π

题型:不详难度:| 查看答案
在三棱柱ABC-A1B1C1中,底面为边长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则sinα的值为(  )
A.B.C.D.

题型:不详难度:| 查看答案
在正方体ABCD-A1B1C1D1中,二面角A1-BD-C1的余弦值为(  )
A.B.C.D.

题型:不详难度:| 查看答案
已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于(  )
A.B.C.D.1

题型:不详难度:| 查看答案
在正方体ABCD-A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是(  )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.