当前位置:高中试题 > 数学试题 > 椭圆的定义与方程 > 给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(1)求椭圆的方程和其“准圆”方程;(2)点是椭圆的“准...
题目
题型:不详难度:来源:
给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.

(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程,
并证明
(ⅱ)求证:线段的长为定值.
答案
(1),,(2)(ⅰ),(ⅱ)详见解析.
解析

试题分析:(1)求椭圆方程,利用待定系数法,列两个独立方程就可解出因为短轴上的一个端点到的距离为,所以所以再根据“准圆”定义,写出“准圆”方程.(2)(ⅰ)直线与椭圆相切问题,通常利用判别式为零求切线方程,利用点斜式设直线方程,与椭圆方程联立消得关于的一元二次方程,由判别式为零得斜率,即证得两直线垂直.(ⅱ)本题是(ⅰ)的一般化,首先对斜率是否存在进行讨论,探讨得斜率不存在时有两直线垂直,即将问题转化为研究直线是否垂直问题,具体就是研究是否成立.研究思路和方法同(ⅰ),由于点坐标在变化,所以由判别式为零得关于点坐标的一个等式:,即,而这等式对两条切线都适用,所以的斜率为方程两根,因此.当垂直时,线段为准圆的直径,为定值4.
试题解析:解:(1)
椭圆方程为,                            2分
准圆方程为.                             3分
(2)(ⅰ)因为准圆轴正半轴的交点为
设过点且与椭圆相切的直线为
所以由.
因为直线与椭圆相切,
所以,解得,       6分
所以方程为.                 7分
.                              8分
(ⅱ)①当直线中有一条斜率不存在时,不妨设直线斜率不存在,

时,与准圆交于点
此时(或),显然直线垂直;
同理可证当时,直线垂直.             10分
②当斜率存在时,设点,其中.
设经过点与椭圆相切的直线为
所以由
.
化简整理得
因为,所以有.
的斜率分别为,因为与椭圆相切,
所以满足上述方程
所以,即垂直.                          12分
综合①②知:因为经过点,又分别交其准圆于点,且垂直.
所以线段为准圆的直径,
所以线段的长为定值.                             14分
核心考点
试题【给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(1)求椭圆的方程和其“准圆”方程;(2)点是椭圆的“准】;主要考察你对椭圆的定义与方程等知识点的理解。[详细]
举一反三
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点
(1)求椭圆的方程;
(2)直线与椭圆相交于两点, 为原点,在上分别存在异于点的点,使得在以为直径的圆外,求直线斜率的取值范围.
题型:不详难度:| 查看答案
如图,已知点是离心率为的椭圆上的一点,斜率为的直线交椭圆两点,且三点互不重合.

(1)求椭圆的方程;(2)求证:直线的斜率之和为定值.
题型:不详难度:| 查看答案
已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足为坐标原点),当时,求实数的取值范围?
题型:不详难度:| 查看答案
已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是正三角形,则这个椭圆的离心率是(     )
A.    B.    C.     D.
题型:不详难度:| 查看答案
已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.