当前位置:高中试题 > 数学试题 > 线线角 > 如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF//AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面E...
题目
题型:不详难度:来源:
如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF//AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(1)求证:NC∥平面MFD;
(2)若EC=3,求证:ND⊥FC;
(3)求四面体NFEC体积的最大值.
答案
(1)证明:由四边形MNEF,EFDC都是矩形,得到MN∥EF∥CD,MN=EF=CD.
推出四边形MNCD是平行四边形,从而NC∥平面MFD.
(2)证明:连接ED,设ED∩FC=O.推出FC⊥NE.又EC=CD,所以四边形ECDF为正方形,结合 FC⊥ED.推出FC⊥平面NED,所以ND⊥FC.(3)x=2时,四面体NFEC的体积有最大值2.
解析

试题分析:(1)证明:因为四边形MNEF,EFDC都是矩形,所以MN∥EF∥CD,MN=EF=CD.
所以四边形MNCD是平行四边形,所以NC∥MD,因为NC⊄平面MFD,所以NC∥平面MFD.                 4分
(2)证明:连接ED,设ED∩FC=O.因为平面MNEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF,                              5分
所以FC⊥NE.又EC=CD,所以四边形ECDF为正方形,所以 FC⊥ED.所以FC⊥平面NED,
所以ND⊥FC.                              8分
(3)解:设NE=,则EC=4-,其中0<x<4.由(1)得NE⊥平面FEC,所以四面体NFEC的体积为,所以.
当且仅当,即x=2时,四面体NFEC的体积有最大值2.
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,(1)(2)小题,将立体问题转化成平面问题,这也是解决立体几何问题的一个基本思路。(3)利用函数思想,构建体积函数表达式,应用均值定理,求得体积的最大值。
核心考点
试题【如图,矩形ABCD中,AB=3,BC=4.E,F分别在线段BC和AD上,EF//AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面MNEF⊥平面E】;主要考察你对线线角等知识点的理解。[详细]
举一反三
如图,棱柱ABCD—的底面为菱 形 ,AC∩BD=O侧棱BD,F的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:平面平面.
题型:不详难度:| 查看答案
已知三棱锥的底面是直角三角形,且平面是线段的中点,如图所示.

(Ⅰ)证明:平面
(Ⅱ)求三棱锥的体积.
题型:不详难度:| 查看答案
如图所示,四面体ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.

(1)求证:AD⊥BC;
(2)求二面角B—AC—D的余弦值.
题型:不详难度:| 查看答案
一个正方体的六个面上分别标有A,B,C,D,E,F,下图是正方体的两种不同放置,则与D面相对的面上的字母是________
题型:不详难度:| 查看答案
(本小题满分12分)
如图,三棱柱中,
的中点,且

(1)求证:∥平面
(2)求与平面所成角的大小.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.