当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=ln(x+1)-x(1)求f(x)的极值;(2)若x>-1,求证1-1x+1≤ln(x+1)≤x;(3)若函数g(x)=f(x)+1+xx(x...
题目
题型:不详难度:来源:
已知函数f(x)=ln(x+1)-x
(1)求f(x)的极值;
(2)若x>-1,求证1-
1
x+1
≤ln(x+1)≤x

(3)若函数g(x)=
f(x)+1+x
x
(x>0)
,当g(x)>
k
x+1
恒成立时,求整数k的最大值.
答案
(1)函数f(x)的定义域为(-1,+∞).
f′(x)=
1
x+1
-1
=
-x
x+1

当-1<x<0时,f′(x)>0,f(x)单调递增;当x>0时,f′(x)<0,f(x)单调递减,
所以当x=0时f(x)取得极大值f(0)=0,无极小值;
(2)由(1)知,x=0为f(x)唯一的极大值点,也即最大值点,
所以当x>-1时,f(x)≤f(0)=0,即ln(x+1)-x≤0,
所以ln(x+1)≤x;
令g(x)=ln(x+1)+
1
x+1
-1,则g′(x)=
1
x+1
-
1
(x+1)2
=
x
(x+1)2

当-1<x<0时,g′(x)<0,g(x)单调递减;当x>0时,g′(x)>0,g(x)单调递增,
所以x=0是g(x)唯一的极小值点,也即最小值点,
所以g(x)≥g(0)=0,即ln(x+1)+
1
x+1
-1≥0,
所以ln(x+1)≥1-
1
x+1

综上,x>-1时,1-
1
x+1
≤ln(x+1)≤x

(3)g(x)=
ln(x+1)+1
x
,当x>0时,g(x)>
k
x+1
恒成立,令x=1有k<2[1+ln2].
又k为正整数.则k的最大值不大于3.
下面证明当k=3时,f(x)>
k
x+1
(x>0)恒成立,即证明x>0时(x+1)ln(x+1)+1-2x>0恒成立.
令g(x)=(x+1)ln(x+1)+1-2x,
则g′(x)=ln(x+1)-1.
当x>e-1时,g′(x)>0;当0<x<e-1时,g′(x)<0.
∴当x=e-1时,g(x)取得最小值g(e-1)=3-e>0.
∴当x>0时,(x+1)ln(x+1)+1-2x>0恒成立.
因此正整数k的最大值为3.
核心考点
试题【已知函数f(x)=ln(x+1)-x(1)求f(x)的极值;(2)若x>-1,求证1-1x+1≤ln(x+1)≤x;(3)若函数g(x)=f(x)+1+xx(x】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是______.
题型:不详难度:| 查看答案
某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为x元(8≤x≤9)时,一年的销售量为(10-x)2万件.
(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).
题型:福建难度:| 查看答案
已知函数f(x)=
1
2
x2+lnx
(1)求函数f(x)在[1,e]上的最大值,最小值;
(2)求证:在区间[1,+∞)上,函数f(x)的图象在函数g(x)=
2
3
x3图象的下方.
题型:不详难度:| 查看答案
某厂生产产品x件的总成本c(x)=1200+
2
75
x3(万元),已知产品单价P(万元)与产品件数x满足:p2=
k
x
,生产100件这样的产品单价为50万元.
(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;
(2)产量x定为多少件时总利润L(x)(万元)最大?并求最大值(精确到1万元).
题型:不详难度:| 查看答案
f(x)=x3-3x2+2在区间[-1,1]上的最大值是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.