当前位置:高中试题 > 数学试题 > 函数极值与最值 > 已知函数f(x)=lnx-ax;(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;(Ⅱ)若f(x)在[1,e]上的最小值为32,求a的值;(Ⅲ)若f(x)<x2...
题目
题型:不详难度:来源:
已知函数f(x)=lnx-
a
x

(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;
(Ⅱ)若f(x)在[1,e]上的最小值为
3
2
,求a的值;
(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.
答案
(I)由题意f(x)的定义域为(0,+∞),且f"(x)=
1
x
+
a
x2
=
x+a
x2
…(2分)
∵a>0,
∴f"(x)>0,
故f(x)在(0,+∞)上是单调递增函数    …(4分)
(II)由(I)可知,f′(x)=
x+a
x2

(1)若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数,
∴[f(x)]min=f(1)=-a=
3
2

∴a=-
3
2
(舍去) …(5分)
(2)若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,
∴[f(x)]min=f(e)=1-
a
e
=
3
2
⇒a=-
e
2
(舍去)…(6分)
(3)若-e<a<-1,令f"(x)=0得x=-a,当1<x<-a时,f"(x)<0,
∴f(x)在(1,-a)上为减函数,f(x)在(-a,e)上为增函数,
∴[f(x)]min=f(-a)=ln(-a)+1=
3
2
⇒a=-


e

∴[f(x)]min=f(-a)=ln(-a)+1=
3
2

∴a=-


e
.…(8分)
综上所述,a=-


e

(III)∵f(x)<x2
∴lnx-
a
x
x2

又x>0,∴a>xlnx-x3…(9分)
令g(x)=xlnx-x3,h(x)=g′(x)=1+lnx-3x2
∴h"(x)=
1
x
-6x=
1-6x2
x
∵x∈(1,+∞)时,h"(x)<0,
∴h(x)在(1,+∞)上是减函数,…(10分)
∴h(x)<h(1)=-2<0
即g"(x)<0∴g(x)在(1,+∞)上也是减函数,
∴g(x)在(1,+∞)上是减函数
∴g(x)<g(1)=-1
∴当a≥-1时,f(x)<x2在(1,+∞)上恒成立.…(12分)
核心考点
试题【已知函数f(x)=lnx-ax;(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;(Ⅱ)若f(x)在[1,e]上的最小值为32,求a的值;(Ⅲ)若f(x)<x2】;主要考察你对函数极值与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R).
(1)若x=1为f(x)的极值点,求a的值.
(2)若y=f(x)的图象在(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值.
题型:不详难度:| 查看答案
已知函数f(x)=x3-3x2-9x+1
(1)求函数在区间[-4,4]上的单调性.
(2)求函数在区间[-4,4]上的极大值和极小值与最大值和最小值.
题型:不详难度:| 查看答案
已知函数f(x)=xlnx,g(x)=
x
ex
-
2
e

(Ⅰ)求函数f(x)的最小值;
(Ⅱ)证明:对任意m,n∈(0,+∞),都有f(m)≥g(n)成立.
题型:不详难度:| 查看答案
已知函数f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)当a=
1
2
时,判断证明f(x)的单调性并求f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>1恒成立,试求实数a的取值范围.
题型:不详难度:| 查看答案
函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是(  )
A.0≤a<1B.0<a<1C.-1<a<1D.0<a<
1
2
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.