当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=alnx+2a2x+x(a≠0).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;(Ⅱ)讨论函数f(...
题目
题型:朝阳区二模难度:来源:
已知函数f(x)=alnx+
2a2
x
+x(a≠0).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)当a∈(-∞,0)时,记函数f(x)的最小值为g(a),求证:g(a)≤
1
2
e2
答案
(I)f(x)的定义域为{x|x>0},f′(x)=
a
x
-
2a2
x2
+1
(x>0)
根据题意,有f′(1)=-2,所以2a2-a-3=0,解得a=-1或a=
3
2

(II)f′(x)=
(x-a)(x+2a)
x2
(x>0)

(1)当a>0时,因为x>0,
由f′(x)>0得(x-a)(x+2a)>0,解得x>a;
由f′(x)<0得(x-a)(x+2a)<0,解得0<x<a.
所以函数f(x)在(a,+∞)上单调递增,在(0,a)上单调递减;
(2)当a<0时,因为x>0,
由f′(x)>0得(x-a)(x+2a)>0,解得x>-2a;
由f′(x)<0得(x-a)(x+2a)<0,解得0<x<-2a.
所以函数f(x)在(-2a,+∞)上单调递增,在(0,-2a)上单调递减;
(III)证明:由(Ⅱ)知,当a∈(-∞,0)时,函数f(x)的最小值为g(a),且g(a)=f(-2a)=aln(-2a)-3a,
∴g′(a)=ln(-2a)-2,
令g′(a)=0,得a=-
1
2
e2

当a变化时,g′(a),g(a)的变化情况如下表:
核心考点
试题【已知函数f(x)=alnx+2a2x+x(a≠0).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;(Ⅱ)讨论函数f(】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
a(-∞,-
1
2
e2
-
1
2
e2
(-
1
2
e2
,0)
g′(a)+0-
g(a)极大值
若函数f(x)=x4-ax3+x2-2有且仅有一个极值点,求实数a的取值范围______.
已知x=


2
是函数f(x)=





(x2-2ax)ex,x>0
bx,x<0
的极值点.
(Ⅰ)当b=1时,求函数f(x)的单调区间;
(Ⅱ)当b∈R时,函数y=f(x)-m有两个零点,求实数m的取值范围.
已知函数f(x)=ax2-lnx.(a∈R).
(1)求f(x)的单调区间;
(2)已知曲线y=f(x)与直线y=x相切,求a.
已知函数f(x)=x3-ax2+3x.
(Ⅰ)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最小值和最大值.
(Ⅱ)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围.
已知函数f(x)=ax2+x-xlnx(a>0).
(Ⅰ)若函数满足f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围;
(Ⅱ)当
1
e
<x<y<1时,试比较
y
x
1+lny
1+lnx
的大小;
(Ⅲ)若函数f(x)在定义域上是单调函数,求实数a的取值范围.