当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知f(x)=ax-bx-2lnx,且f(e)=be-ae-2(e为自然对数的底数).(1)求a与b的关系;(2)若f(x)在其定义域内为增函数,求a的取值范围...
题目
题型:不详难度:来源:
已知f(x)=ax-
b
x
-2lnx
,且f(e)=be-
a
e
-2
(e为自然对数的底数).
(1)求a与b的关系;
(2)若f(x)在其定义域内为增函数,求a的取值范围;
(3)证明:
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N,n≥2)

(提示:需要时可利用恒等式:lnx≤x-1)
答案
(1)由题意f(x)=ax-
b
x
-2lnx
f(e)=be-
a
e
-2
,∴ae-
b
e
-2=be-
a
e
-2

∴(a-b)(e+
1
e
)=0,∴a=b.
(2)由(1)知:f(x)=ax-
b
x
-2lnx
,(x>0),∴f′(x)=a+
a
x2
-
2
x
=
ax2-2x+a
x2

令h(x)=ax2-2x+a.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:h(x)≥0恒成立.
即ax2-2x+a≥0,a≥
2x
x2+1
 在(0,+∞)上恒成立.
又∵0<
2x
x2+1
=
2
x+
1
x
≤1,x>0,所以a≥1.
(3)证明:先证:lnx-x+1≤0  (x>0),设K(x)=lnx-x+1,则K′(x)=
1
x
-1=
1-x
x

当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;
当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;
∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0.  即lnx-x+1≤0,∴lnx≤x-1.
由上知 lnx≤x-1,又x>0,∴
lnx
x
≤1-
1
x

∵n∈N+,n≥2,令x=n2,得
lnn2
n2
≤1-
1
n2
,∴
lnn
n2
1
2
(1-
1
n2
),
ln2
22
+
ln3
32
+…+
lnn
n2
1
2
1-
1
22
+1-
1
32
+…+1-
1
n2
 )
=
1
2
[n-1-(
1
22
+
1
32
+… +
1
n2
)]<
1
2
[n-1-(
1
2×3
+
1
3×4
+… +
1
n(n+1)
)]
=
1
2
[n-1-(
1
2
1
3
+
1
3
-
1
4
+…
1
n
-
1
n+1
 )]=
1
2
[n-1-( 
1
2
 -
1
n+1
 )]=
2n2-n-1
4(n+1)

故要证的不等式成立.
核心考点
试题【已知f(x)=ax-bx-2lnx,且f(e)=be-ae-2(e为自然对数的底数).(1)求a与b的关系;(2)若f(x)在其定义域内为增函数,求a的取值范围】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于______.
题型:不详难度:| 查看答案
已知函数f(x)=
a
x
+x+(a-1)lnx-15a,其中a<0,且a≠-1.
(Ⅰ)讨论函数f(x)的单调性.
(Ⅱ)设a>-e10,且函数f(x)在[1,+∞)上的最小值为2,求a的值.
题型:不详难度:| 查看答案
已知函数f(x)=a(x2-1)-xlnx.
(I)当a=
1
2
时,求函数f(x)
的单调区间;
(Ⅱ)当x≥1时,f(x)≥0,求a的取值范围.
题型:不详难度:| 查看答案
若函数f(x)的导函数f′(x)=x2-4x+3,则使得函数f(x-1)单调递减的一个充分不必要条件是x∈(  )
A.[0,1]B.[3,5]C.[2,3]D.[2,4]
题型:河南模拟难度:| 查看答案
函数y=(x2-
3
2
x)ex
的单调递增区间是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.