当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=lnx-a(x-1),(a>0)(1)求函数f(x)的单调区间和极值;(2)若函数f(x)在(1,+∞)是单调减函数,求实数a的取值范围;(3...
题目
题型:不详难度:来源:
已知函数f(x)=lnx-a(x-1),(a>0)
(1)求函数f(x)的单调区间和极值;
(2)若函数f(x)在(1,+∞)是单调减函数,求实数a的取值范围;
(3)在(2)的条件下,当n∈N+时,证明:(1+
1
2
)(1+
1
22
+)(1+
1
23
)…(1+
1
2n
)<e.其中(e≈2.718…即自然对数的底数)
答案
(1)f(x)定义域为(0,+∞)…(1分)
求导数,得f′ (x)=
1
x
-a=
1-ax
x
…(2分)
f’ (x)=0,x1=0,x2=
1
a

0<x<
1
a
时,f′(x)>0;当x>
1
a
时,f′(x)<0…(3分)
∴f(x)的单调增区间为(0,
1
a
)
,f(x)的单调减区间为(
1
a
,+∞)
,…(4分)
因此,f(x)的极大值为f(
1
a
)=-lna-1+a
,无极小值…(5分)
(2)∵函数f(x)在(1,+∞)是单调减函数,
f′ (x)=
1
x
-a≤0
在区间(1,+∞)上恒成立.(7分)
∵x>1,可得0<
1
x
<1

∴a≥1,即实数a的取值范围为[1,+∞)…(9分)
(3)由(2)得当a=1时,f(x)在(1,+∞)上单调递减,
∴f(x)=lnx-(x-1)<f(1)=0
,可得
lnx<x-1,(x>1)
…(10分)
令x=1+
1
2n
,可得ln(1+
1
2n
)<
1
2n
…(11分)
分别取n=1,2,3,…,n得
ln(1+
1
2
)+ln(1+
1
22
)+ln(1+
1
23
)+…+ln(1+
1
2n
)<
1
2
+
1
22
+
1
23
+…+
1
2n
=1-
1
2n
<1…(13分)
即ln[(1+
1
2
)(1+
1
22
)(1+
1
23
)…(1+
1
2n
)]<lne
可得(1+
1
2
)(1+
1
22
+)(1+
1
23
)…(1+
1
2n
)<e,对任意的n∈N*成立.
核心考点
试题【已知函数f(x)=lnx-a(x-1),(a>0)(1)求函数f(x)的单调区间和极值;(2)若函数f(x)在(1,+∞)是单调减函数,求实数a的取值范围;(3】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
已知函数f(x)=ax-
1
x
+b-(a+1)lnx,(a,b∈R),g(x)=-
2
e
x+
e
2

(Ⅰ)若函数f(x)在x=2处取得极小值0,求a,b的值;
(Ⅱ)在(Ⅰ)的条件下,求证:对任意x1x2∈[e,e2],总有f(x1)>g(x2);
(Ⅲ)求函数f(x)的单调递增区间.
题型:不详难度:| 查看答案
若函数f(x)在定义域R内可导,f(1+x)=f(1-x),且当x∈(-∞,1)时,(x-1)f′(x)>0设a=f(0),b=f(
3
2
),c=f(3)
,则(  )
A.a<b<cB.c<a<bC.c<b<aD.b<a<c
题型:不详难度:| 查看答案
函数y=
1
3
x3+ax
在区间[0,1]上是增函数,则a的取值范围为(  )
A.a>0B.a<0C.a≥0D.a≤0
题型:不详难度:| 查看答案
设x1,x2(x1≠x2)使函数f(x)=ax3+bx2-a2x(a>0)的两个极值点
(1)若|x1|+|x2|=2


2
,求b的最大值;  
(2)若x1<x<x2,且x2=a,函数g(x)=f(x)"-a(x-x1),求证:|g(x)|≤
3
4
a3+a2+
a
3
题型:不详难度:| 查看答案
若函数y=lnx-ax的单调递减区间为(1,+∞),则a的值是(  )
A.0<a<1B.-1<a<0C.a=-1D.a=1
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.