当前位置:高中试题 > 数学试题 > 数列综合 > 设数列{an}满足an≠0,a1=1,an=(1-2n)anan-1+an-1(n≥2),数列{an}的前n项和为Sn.(1)求数列{an}的通项公式;(2)求...
题目
题型:不详难度:来源:
设数列{an}满足an≠0,a1=1,an=(1-2n)anan-1+an-1(n≥2),数列{an}的前n项和为Sn
(1)求数列{an}的通项公式;
(2)求证:当n≥2时,
n
n+1
Sn<2

(3)试探究:当n≥2时,是否有
6n
(n+1)(2n+1)
Sn
5
3
?说明理由.
答案
(1)∵an≠0
∴anan-1≠0(n≥2)
an
anan-1
=
(1-2n)anan-1
anan-1
+
an-1
anan-1

1
an-1
=(1-2n)+
1
an
即有
1
an
-
1
an-1
=2n-1

1
an
=
1
a1
+(
1
a2
-
1
a1
)+(
1
a3
-
1
a2
)+…+(
1
an
-
1
an-1
)
=1+3+5+7+…+(2n-1)=
n(1+2n-1)
2
=n2
(n≥2)
1
a1
=1
也适合上式,
an=
1
n2

(2)证明:∵an=
1
n2

Sn=a1+a2+…+an=1+
1
22
+
1
32
+…+
1
n2

∵当n≥2时,
1
n2
1
(n-1)n
=
1
n-1
-
1
n

1+
1
22
+
1
32
+…+
1
n2
<1+[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n-1
-
1
n+1
)]
=2-
1
n+1
<2.
又∵
1
n2
1
n(n+1)
=
1
n
-
1
n+1

Sn>(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)
=1-
1
n+1
=
n
n+1

∴当n≥2时,
n
n+1
Sn<2

(3)∵
1
n2
=
4
4n2
4
(2n-1)(2n+1)
=2(
1
2n-1
-
1
2n+1
)

1+
1
22
+
1
32
+…+
1
n2
<1+2[(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)]

=
5
3
-
2
2n+1
5
3

当n≥2时,要Sn
6n
(n+1)(2n+1)
只需
n
n+1
6n
(n+1)(2n+1)

即需2n+1>6,显然这在n≥3时成立
S2=1+
1
4
=
5
4
,当n≥2时
6n
(n+1)(2n+1)
=
6×2
(2+1)(4+1)
=
4
5
显然
5
4
4
5

即当n≥2时Sn
6n
(n+1)(2n+1)
也成立
综上所述:当n≥2时,有
6n
(n+1)(2n+1)
Sn
5
3
核心考点
试题【设数列{an}满足an≠0,a1=1,an=(1-2n)anan-1+an-1(n≥2),数列{an}的前n项和为Sn.(1)求数列{an}的通项公式;(2)求】;主要考察你对数列综合等知识点的理解。[详细]
举一反三
已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn-1=bn+(2n-1)( n∈N*).
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{bn}的通项公式bn
(Ⅲ)若cn=
anbn
n
,求数列{cn}的前n项和Tn
题型:不详难度:| 查看答案
已知数列{an},满足a1=1,
1
an+1
=
1
an
+1
,Sn是数列{anan+1}的前n项和,则S2011=______.
题型:不详难度:| 查看答案
已知Sn=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n×(n+1)
(n∈N*)的值是
2008
2009
,则n=______.
题型:不详难度:| 查看答案
数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则
1
a1
+
1
a2
+
1
a3
+…+
1
a2011
=(  )
A.
2010
2011
B.
2011
1006
C.
2011
2012
D.
2010
1006
题型:不详难度:| 查看答案
设正数数列{an}的前n项之和为Sn满足Sn=(
an+1
2
)2

①先求出a1,a2,a3,a4的值,然后猜想数列{an}的通项公式,并用数学归纳法加以证明.
②设bn=
1
anan+1
,数列{bn}的前n项和为Tn
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.