当前位置:高中试题 > 数学试题 > 函数的零点 > 设函数f(x)=alnx,g(x)=12x2.(1)记h(x)=f(x)-g(x),若a=4,求h(x)的单调递增区间;(2)记g"(x)为g(x)的导函数,若...
题目
题型:解答题难度:一般来源:不详
设函数f(x)=alnx,g(x)=
1
2
x2
(1)记h(x)=f(x)-g(x),若a=4,求h(x)的单调递增区间;
(2)记g"(x)为g(x)的导函数,若不等式f(x)+2g"(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(3)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.
答案
(1)当a=4时,可得f(x)=4lnx,此时h(x)=4lnx-
1
2
x2

h(x)=
4
x
-x>0
得-2<x<2,结合x>0,可得0<x<2.
所以h(x)的单调递增区间为(0,2).…(4分)
(2)不等式f(x)+2g′(x)≤(a+3)x-g(x),即为alnx+2x≤(a+3)x-
1
2
x2

化简得:a(x-lnx)≥
1
2
x2-x

由x∈[1,e]知x-lnx>0,因而a≥
1
2
x2-x
x-lnx
,设y=
1
2
x2-x
x-lnx

y=
(x-1)(x-lnx)-(1-
1
x
)(
1
2
x2-x)
(x-lnx)2
=
(x-1)(
1
2
x+1-lnx)
(x-lnx)2

∵当x∈(1,e)时x-1>0,
1
2
x+1-lnx>0
,∴y′>0在x∈[1,e]时成立.
由不等式有解,可得知a≥ymin=-
1
2
,即实数a的取值范围是[-
1
2
,+∞)…(10分)
(3)当a=1,f(x)=lnx.
由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,得mg(x1)-x1f(x1)>mg(x2)-x2f(x2)恒成立,
t(x)=
m
2
x2-xlnx(x>0)

由题意知x1>x2>0,故当x∈(0,+∞)时函数t(x)单调递增,
∴t′(x)=mx-lnx-1≥0恒成立,即m≥
lnx+1
x
恒成立,
因此,记y=
lnx+1
x
,得y(x)=
-lnx
x2

∵函数在(0,1)上单调递增,在(1,+∞)上单调递减,
∴函数h(x)在x=1时取得极大值,并且这个极大值就是函数h(x)的最大值.
由此可得h(x)max=h(1)=1,故m≥1,结合已知条件m∈Z,m≤1,可得m=1.…(16分)
核心考点
试题【设函数f(x)=alnx,g(x)=12x2.(1)记h(x)=f(x)-g(x),若a=4,求h(x)的单调递增区间;(2)记g"(x)为g(x)的导函数,若】;主要考察你对函数的零点等知识点的理解。[详细]
举一反三
设函数f(x)=alnx,g(x)=
1
2
x2

(1)记h(x)=f(x)-g(x),若a=4,求h(x)的单调递增区间;
(2)记g"(x)为g(x)的导函数,若不等式f(x)+2g"(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(3)若在[1,e]上存在一点x0,使得f(x0)-f′(x0)>g′(x0)+
1
g′(x0)
成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则a•b=______.
题型:填空题难度:一般| 查看答案
函数f(x)=x3+x-3的实数解所在的区间是(  )
A.〔0,1〕B.〔1,2〕C.〔2,3〕D.〔3,4〕
题型:单选题难度:一般| 查看答案
函数f(x)=lnx+2x-6在(2,3)内零点的个数为(  )
A.0B.1C.2D.4
题型:单选题难度:简单| 查看答案
已知函数f(x)=





kx+2,x≤0
lnx,x>0
,若k>0,则函数y=|f(x)|-1的零点个数是(  )
A.1B.2C.3D.4
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.