当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=f(x)x-1....
题目
题型:解答题难度:一般来源:广州一模
已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)
x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).
答案
(1)∵关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),
即不等式x2+(a+1-2m)x+m2+m<0的解集为(m,m+1),
∴x2+(a+1-2m)x+m2+m=(x-m)(x-m-1).
∴x2+(a+1-2m)x+m2+m=x2-(2m+1)x+m(m+1).
∴a+1-2m=-(2m+1).
∴a=-2.…(2分)
(2)解法1:由(1)得g(x)=
f(x)
x-1
=
x2-2x+m+1
x-1
=(x-1)+
m
x-1

∴φ(x)=g(x)-kln(x-1)=(x-1)+
m
x-1
-kln(x-1)的定义域为(1,+∞).
∴φ"(x)=1-
m
(x-1)2
-
k
x-1
=
x2-(2+k)x+k-m+1
(x-1)2
.…(3分)
方程x2-(2+k)x+k-m+1=0(*)的判别式△=(2+k)2-4(k-m+1)=k2+4m.…(4分)
①当m>0时,△>0,方程(*)的两个实根为x1=
2+k-


k2+4m
2
<1
x2=
2+k+


k2+4m
2
>1
,…(5分)
则x∈(1,x2)时,φ"(x)<0;x∈(x2,+∞)时,φ"(x)>0.
∴函数φ(x)在(1,x2)上单调递减,在(x2,+∞)上单调递增.
∴函数φ(x)有极小值点x2.…(6分)
②当m<0时,由△>0,得k<-2


-m
k>2


-m

k<-2


-m
,则x1=
2+k-


k2+4m
2
<1
x2=
2+k+


k2+4m
2
<1

故x∈(1,+∞)时,φ"(x)>0,
∴函数φ(x)在(1,+∞)上单调递增.
∴函数φ(x)没有极值点.…(7分)
k>2


-m
时,x1=
2+k-


k2+4m
2
>1
x2=
2+k+


k2+4m
2
>1

则x∈(1,x1)时,φ"(x)>0;x∈(x1,x2)时,φ"(x)<0;x∈(x2,+∞)时,φ"(x)>0.
∴函数φ(x)在(1,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增.
∴函数φ(x)有极小值点x2,有极大值点x1.…(8分)
综上所述,当m>0时,k取任意实数,函数φ(x)有极小值点x2
当m<0时,k>2


-m
,函数φ(x)有极小值点x2,有极大值点x1.…(9分)
(其中x1=
2+k-


k2+4m
2
x2=
2+k+


k2+4m
2

解法2:由(1)得g(x)=
f(x)
x-1
=
x2-2x+m+1
x-1
=(x-1)+
m
x-1

∴φ(x)=g(x)-kln(x-1)=(x-1)+
m
x-1
-kln(x-1)的定义域为(1,+∞).
∴φ"(x)=1-
m
(x-1)2
-
k
x-1
=
x2-(2+k)x+k-m+1
(x-1)2
.…(3分)
若函数φ(x)=g(x)-kln(x-1)存在极值点等价于函数φ"(x)有两个不等的零点,且
至少有一个零点在(1,+∞)上.…(4分)
令φ"(x)=
x2-(2+k)x+k-m+1
(x-1)2
=0,
得x2-(2+k)x+k-m+1=0,(*)
则△=(2+k)2-4(k-m+1)=k2+4m>0,(**)              …(5分)
方程(*)的两个实根为x1=
2+k-


k2+4m
2
x2=
2+k+


k2+4m
2

设h(x)=x2-(2+k)x+k-m+1,
①若x1<1,x2>1,则h(1)=-m<0,得m>0,此时,k取任意实数,(**)成立.
则x∈(1,x2)时,φ"(x)<0;x∈(x2,+∞)时,φ"(x)>0.
∴函数φ(x)在(1,x2)上单调递减,在(x2,+∞)上单调递增.
∴函数φ(x)有极小值点x2.…(6分)
②若x1>1,x2>1,则





h(1)=-m>0
2+k
2
>1





m<0
k>0

又由(**)解得k>2


-m
k<-2


-m

k>2


-m
.…(7分)
则x∈(1,x1)时,φ"(x)>0;x∈(x1,x2)时,φ"(x)<0;x∈(x2,+∞)时,φ"(x)>0.
∴函数φ(x)在(1,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增.
∴函数φ(x)有极小值点x2,有极大值点x1.…(8分)
综上所述,当m>0时,k取任何实数,函数φ(x)有极小值点x2
当m<0时,k>2


-m
,函数φ(x)有极小值点x2,有极大值点x1.…(9分)
(其中x1=
2+k-


k2+4m
2
x2=
2+k+


k2+4m
2

(3)证法1:∵m=1,∴g(x)=(x-1)+
1
x-1

[g(x+1)]n-g(xn+1)=(x+
1
x
)n-(xn+
1
xn
)
=xn+
C1n
xn-1
1
x
+
C2n
xn-2
1
x2
+…+
Cn-1n
x•
1
xn-1
+
Cnn
1
xn
-(xn+
1
xn
)

=
C1n
xn-2+
C2n
xn-4+…+
Cn-1n
x2-n
.…(10分)
令T=
C1n
xn-2+
C2n
xn-4+…+
Cn-1n
x2-n

则T=
Cn-1n
x2-n+
Cn-2n
x4-n+…+
C1n
xn-2
=
C1n
x2-n+
C2n
x4-n+…+
Cn-1n
xn-2

∵x>0,
∴2T=
C1n
(xn-2+x2-n)+
C2n
(xn-4+x4-n)+…+
Cn-1n
(x2-n+xn-2)
…(11分)≥
C1n
•2


xn-2x2-n
+
C2n
•2


xn-4x4-n
+…+
Cn-1n
•2


x2-nxn-2
…(12分)
=2(
C1n
+
C2n
+…+
Cn-1n
)
=2(
C0n
+
C1n
+
C2n
+…+
Cn-1n
+
Cnn
-
C0n
-
Cnn
)
=2(2n-2).…(13分)
∴T≥2n-2,即[g(x+1)]n-g(xn+1)≥2n-2.…(14分)
证法2:下面用数学归纳法证明不等式(x+
1
x
)n-(xn+
1
xn
)
≥2n-2.
①当n=1时,左边=(x+
1
x
)-(x+
1
x
)=0
,右边=21-2=0,不等式成立;
…(10分)
②假设当n=k(k∈N*)时,不等式成立,即(x+
1
x
)
k
-(xk+
1
xk
)
≥2k-2,
则 (x+
1
x
)k+1-(xk+1+
1
xk+1
)
=(x+
1
x
)[(x+
1
x
)
k
-(xk+
1
xk
)]+(x+
1
x
)(xk+
1
xk
)-(xk+1+
1
xk+1
)
=(x+
1
x
)[(x+
1
x
)
k
-(xk+
1
xk
)]+
(xk-1+
1
xk-1
)
…(11分)≥2


x•
1
x
•(2k-2)+2


xk-1
1
xk-1
=2k+1-2.…(13分)
也就是说,当n=k+1时,不等式也成立.
由①②可得,对∀n∈N*,[g(x+1)]n-g(xn+1)≥2n-2都成立.…(14分)
核心考点
试题【已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=f(x)x-1.】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=





(
1
3
)
x
,x≥3
f(x+1),x<3
,则f(2+log32)的值为(  )
A.-
2
27
B.
1
54
C.
2
27
D.-54
题型:单选题难度:简单| 查看答案
已知函数f(x)=
a
a2-1
(ax-a-x)
,其中a>0且a≠1.
(1)分别判断f(x)在(-∞,+∞)上的单调性;
(2)比较f(1)-1与f(2)-2、f(2)-2与f(3)-3的大小,由此归纳出一个更一般的结论,并证明;
(3)比较
f(1)
1
f(2)
2
f(2)
2
f(3)
3
的大小,由此归纳出一个更一般的结论,并证明.
题型:解答题难度:一般| 查看答案
定义在R上的函数f(x),对任意x∈R都有f(x+2)=f(x),当x∈(-2,0)时,f(x)=4x,则f(2013)=______.
题型:填空题难度:一般| 查看答案
双曲线
x2
a2
-
y2
b2
=1的离心率e1,双曲线
y2
b2
-
x2
a2
=1的离心率为e2,则e1+e2的最小值为(  )
A.4


2
B.2C.2


2
D.4
题型:单选题难度:简单| 查看答案
若函数y=f(x)+sinx在区间(-
π
4
4
)
内单调递增,则f(x)可以是(  )
A.sin(π-x)B.cos(π-x)C.sin(
π
2
-x)
D.cos(
π
2
+x)
题型:单选题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.