当前位置:初中试题 > 数学试题 > 等边三角形性质 > 如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC=______°....
题目
题型:不详难度:来源:
如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC=______°.
答案
∵AD是等边△ABC的中线,
∴AD⊥BC,∠BAD=∠CAD=
1
2
∠BAC=
1
2
×60°=30°,
∴∠ADC=90°,
∵AD=AE,
∴∠ADE=∠AED=
180°-∠CAD
2
=75°,
∴∠EDC=∠ADC-∠ADE=90°-75°=15°.
故答案为:15.
核心考点
试题【如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC=______°.】;主要考察你对等边三角形性质等知识点的理解。[详细]
举一反三
如图,在正△ABC的三边AB、BC、CA上分别有点D、E、F,若DE⊥BC,EF⊥AC,FD⊥AB,同时成立,求D点在AB上的位置.
题型:不详难度:| 查看答案
如图,在直角坐标系中,点B坐标为(-4,0),点C与点B关于原点O对称,点A为y轴上一动点,其坐标为(0,k),BE,CD分别为△ABC中AC,AB边上的高,垂足分别为E,D.
(1)当k=-3时,求AB的长;
(2)试说明△DOE是等腰三角形;
(3)k取何值时,△DOE是等边三角形?(直接写出k的值即可)
题型:不详难度:| 查看答案
已知△ABC是等边三角形,D是BC边上任一点,连结AD,并作等边三角形ADE,若DE⊥AB,那么
BD
DC
的值为______.
题型:不详难度:| 查看答案
如图所示,△ABC和△ECD均为等边三角形,B、C、D三点共线,AD与BE交于点O.求∠BOD的度数.
题型:不详难度:| 查看答案
如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°.点D是直线BC上的一个动点,连接AD,并以AD为边在AD的右侧作等边△ADE.
(1)如图①,当点E恰好在线段BC上时,请判断线段DE和BE的数量关系,并结合图①证明你的结论;
(2)当点E不在直线BC上时,连接BE,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论;
(3)若AC=3,点D在直线BC上移动的过程中,是否存在以A、C、D、E为顶点的四边形是梯形?如果存在,直接写出线段CD的长度;如果不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.