当前位置:初中试题 > 数学试题 > 二次函数最值 > 萧山某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)...
题目
题型:不详难度:来源:
萧山某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.
(1)商家降价后的售价为x元,每星期的销售利润为y元,求y关于x的函数解析式;
(2)商家计划通过降价促销后,使每星期的销售利润达2600元,请问商家的计划能否实现?如果能,请给出销售方案;如果不能,请说明理由.
答案
(1)每降价5元,每星期可多卖出20件.
∴每降价1元,就多卖出4件.
y=(x-100)[80+(130-x)×4]
=(x-100)(600-4x)
=-4x2+1000x-60000;

(2)y=-4x2+1000x-60000
y=-4(x-125)2+2500
∴y的最大值为2500,
∴商家的计划不能实现.
核心考点
试题【萧山某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)】;主要考察你对二次函数最值等知识点的理解。[详细]
举一反三
说明:不论x取何值,代数式x2-5x+7的值总大于0.并尝试求出当x取何值时,代数式x2-5x+7的值最小?最小值是多少?
题型:不详难度:| 查看答案
已知a,b是整数,a≠b且-4≤a≤5,-4≤b≤5,则二次函数y=x2-(a+b)x+ab的最小值的最大值为______.
题型:不详难度:| 查看答案
某厂生产一种产品,每件成本18元,经调查按40元/件出售,每日可售出20件,为了增加销量,每降价2元,日销售量可增加4件.(1)求日销售利润y和销售单价x之间的函数关系式;
(2)销售单价是多少元时,每日的利润最大,日最大利润是多少元.
题型:不详难度:| 查看答案
若二次函数y=(m+1)x2+m2-9有最大值,且图象经过原点,则m=______.
题型:不详难度:| 查看答案
已知二次函数y=
1
3
(x-4)2-3
,它的最小值是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.