当前位置:初中试题 > 数学试题 > 一次函数定义 > (2013年四川南充3分) 如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止...
题目
题型:不详难度:来源:
(2013年四川南充3分) 如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH的解析式为;④若△ABE与△QBP相似,则t=秒。其中正确的结论个数为【   】
A.4B.3C.2 D.1

答案
B。
解析
根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/秒,

∴BC=BE=5cm。∴AD=BE=5,故结论①正确。
如图1,过点P作PF⊥BC于点F,
根据面积不变时△BPQ的面积为10,可得AB=4,
∵AD∥BC,∴∠AEB=∠PBF。

∴PF=PBsin∠PBF=t。
∴当0<t≤5时,y=BQ•PF=t•t=。故结论②正确。
根据5~7秒面积不变,可得ED=2,
当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=11,故点H的坐标为(11,0)。
设直线NH的解析式为y=kx+b,
将点H(11,0),点N(7,10)代入可得:,解得:
∴直线NH的解析式为:。故结论③错误。
如图2,当△ABE与△QBP相似时,点P在DC上,

∵tan∠PBQ=tan∠ABE=,∴,即
解得:t=。故结论④正确。
综上所述,①②④正确,共3个。故选B。
核心考点
试题【 (2013年四川南充3分) 如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止】;主要考察你对一次函数定义等知识点的理解。[详细]
举一反三
(2013年四川南充8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:

(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
题型:不详难度:| 查看答案
(2013年四川攀枝花6分)如图,直线y=k1x+b(k1≠0)与双曲线(k2≠0)相交于A(1,2)、B(m,﹣1)两点.

(1)求直线和双曲线的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<0<x2<x3,请直接写出y1,y2,y3的大小关系式;
(3)观察图象,请直接写出不等式k1x+b<的解集.
题型:不详难度:| 查看答案
(2013年四川攀枝花12分)如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.

(1)点A的坐标为   ,直线l的解析式为   
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;
(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;
(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.
题型:不详难度:| 查看答案
(2013年四川资阳3分)在一次函数y=(2﹣k)x+1中,y随x的增大而增大,则k的取值范围为   
题型:不详难度:| 查看答案
(2013年浙江义乌4分)如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l 2于点E.当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2

(1)若点B在线段AC上,且S1=S2,则B点坐标为     
(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为     
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.