当前位置: > 等差数列﹛an﹜的前n项和为Sn=2n²+bn,且a4=13,若数列﹛bn﹜满足b1=5,bn+1=abn,求﹛bn﹜的通项公式...
题目
等差数列﹛an﹜的前n项和为Sn=2n²+bn,且a4=13,若数列﹛bn﹜满足b1=5,bn+1=abn,求﹛bn﹜的通项公式

提问时间:2021-03-13

答案
假设an公差为d,则由于a4=13,所以an=(n-4)d+13Sn=[(-3d+13)+(n-4)d+13]n/2=[(n-7)d+26]n/2=d/2×n²+(26-7d)/2 ×n所以d/2=2,bn=(26-7d)/2 ×n=-n.对于后面的若数列﹛bn﹜满足b1=5,bn+1=abn,我很不解....
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.