当前位置: > 两相交圆x^2+y^2+dx+ey+f=0和x^2+y^2+ax+by+c1=0的公共弦的直线方程为(a-d)x+(b-e)y+c-f=o 的证明...
题目
两相交圆x^2+y^2+dx+ey+f=0和x^2+y^2+ax+by+c1=0的公共弦的直线方程为(a-d)x+(b-e)y+c-f=o 的证明

提问时间:2020-10-03

答案
证明:设A(X1,Y1),B(X2,Y2)是给出两圆的交点,则A点的坐标适合两圆的方程,代入两圆方程,相减,就得A点坐标适合所给直线的方程,同理B点坐标也适合所给直线方程,从而所给方程的直线过A、B两点.由于过两点的直线只有一条,...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.