当前位置: > 高数线性代数设A为n阶可逆矩阵,B为任一n*m矩阵,如何证明...
题目
高数线性代数设A为n阶可逆矩阵,B为任一n*m矩阵,如何证明
如果对A实行一系列初等行变换把A化为单位矩阵I,则对矩阵B施行同样的这一系列初等行变换就把B化为A^-1B

提问时间:2020-09-04

答案
初等行变换相当于在矩阵的左边乘一系列初等矩阵
初等矩阵的乘积是可逆矩阵
P(A,B)=(E,X)
PA=E
PB=X
得 P=A^-1,X=A^-1B
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.