当前位置:高中试题 > 物理试题 > 电磁感应中切割类问题 > 如图所示,两条平行的金属导轨相距L=lm,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B2中,两部分磁场的大...
题目
题型:不详难度:来源:
如图所示,两条平行的金属导轨相距L=lm,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B2中,两部分磁场的大小均为0.5T.金属棒MN和PQ的质量均为m=0.2kg,电阻分别为RMN=0.5Ω和RPQ=1.5Ω.MN置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F1的作用下由静止开始以a=2m/s2的加速度向右做匀加速直线运动,PQ则在平行于斜面方向的力F2作用下保持静止状态.不计导轨的电阻,水平导轨足够长,MN始终在水平导轨上运动.求:
(1)t=5s时,PQ消耗的电功率;
(2)t=0~2.0s时间内通过PQ棒的电荷量;
(3)规定图示F1、F2方向作为力的正方向,分别求出F1、F2随时间t变化的函数关系;
(4)若改变F1的作用规律,使MN棒的运动速度v与位移s满足关系:v=0.4s,PQ棒仍然静止在倾斜轨道上.求MN棒从静止开始到s=5m的过程中,F1所做的功.
答案
(1)金属棒MN在t=5s时的速度为:
v=at=2×5m/s=10m/s
电动势为:
E=BLv=0.5×1×10V=5V
电流为:I=
E
RMN+RPQ
=
5
0.5+1.5
A=2.5A
则PQ消耗的电功率为:
PPQ=I2RPQ=2.52×1.5W=9.375W
(2)t=0~2.0s时间内金属棒MN运动的位移为:
s=
1
2
at2
=
1
2
×2×22
m=4m
t=0~2.0s时间内穿过回路MNQP磁通量的变化量:
△φ=B1Ls=0.5×1×4Wb=2Wb
t=0~2.0s时间内通过PQ棒的电荷量为:
q=
.
I
•t=
.
E
RMN+RPQ
•t=
△φ
RMN+RPQ
=
2
0.5+1.5
C=1C
(3)金属棒MN做匀加速直线运动过程中,电流为:
I=
BLv
RMN+RPQ
=
BLat
RMN+RPQ
=
0.5×1×2×t
0.5+1.5
=0.5t(A)
对MN运用牛顿第二定律得:
F1-BIL-Ff=ma
F1=ma+μmg+BIL
代入数据得:F1=(1.4+0.25t)(N)
金属棒PQ处于静止状态,根据平衡条件得:
F2+BIL=mgsin37°
代入数据得:F2=(1.2-0.25t)(N)
(4)MN棒做变加速直线运动,当s=5m时,vt=0.4s=0.4×5m/s=2m/s
因为速度v与位移s成正比,所以电流I、安培力也与位移s成正比,安培力做功:
WB=-
.
FA
s=-
1
2
BL
BLvt
RMN+RPQ
•s=-
1
2
×
0.52×12×2
0.5+1.5
×5J=-0.625J
MN棒动能定理:WF1-μmgs=
1
2
m
v2t
-0
WF1=
1
2
m
v2t
+μmgs-WB=
1
2
×0.2×22
+0.5×0.2×10×5+0.625=6.025J
答:(1)t=5s时,PQ消耗的电功率为9.375W;
(2)t=0~2.0s时间内通过PQ棒的电荷量为1C;
(3)F1随时间t变化的函数关系为F1=(1.4+0.25t)N,F2随时间t变化的函数关系为F2=(1.2-0.25t)N;
(4)MN棒从静止开始到s=5m的过程中,F1所做的功为6.025J.
核心考点
试题【如图所示,两条平行的金属导轨相距L=lm,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B2中,两部分磁场的大】;主要考察你对电磁感应中切割类问题等知识点的理解。[详细]
举一反三
两根固定在水平面上的光滑平行金属导轨MN和PQ,一端接有阻值为R=4Ω的电阻,处于方向竖直向下的匀强磁场中.在导轨上垂直导轨跨放质量m=0.5kg的金属直杆,金属杆的电阻为r=1Ω,金属杆与导轨接触良好,导轨足够长且电阻不计.金属杆在垂直杆F=0.5N的水平恒力作用下向右匀速运动时,电阻R上的电功率是P=4W.
(1)求通过电阻R的电流的大小和方向;
(2)求金属杆的速度大小;
(3)某时刻撤去拉力,当电阻R上的电功率为
P
4
时,金属杆的加速度大小、方向.
题型:不详难度:| 查看答案
如图所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长.从置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab边平行MN进入磁场.线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1:第二次bc边平行MN进入磁场.线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则(  )
A.Q1>Q2q1=q2B.Q1>Q2q1>q2
C.Q1=Q2q1=q2D.Q1=Q2q1>q2

题型:不详难度:| 查看答案
一个有左边界匀强磁场区域如图甲所示,质量为m、电阻为R的长方形矩形线圈abcd边长分别为L和2L,线圈一半在磁场内,一半在磁场外,磁感强度为B0.t=0时刻磁场开始均匀减小,线圈中产生感应电流,在磁场力作用下运动,v-t图象如图乙,图中斜向虚线为过O点速度图线的切线,数据由图中给出,不考虑重力影响.则磁感强度的变化率为______,t3时刻回路中的电功率为______.
题型:不详难度:| 查看答案
如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块K和质量为m的缓冲车厢.在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN.缓冲车的底部,安装电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B.导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L.假设缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计.
(1)求滑块K的线圈中最大感应电动势的大小;
(2)若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电量和产生的焦耳热各是多少?
(3)若缓冲车以某一速度
v′0
(未知)与障碍物C碰撞后,滑块K立即停下,缓冲车厢所受的最大水平磁场力为Fm.缓冲车在滑块K停下后,其速度v随位移x的变化规律满足:v=
v′0
-
n2B2L2
mR
x
.要使导轨右端不碰到障碍物,则缓冲车与障碍物C碰撞前,导轨右端与滑块K的cd边距离至少多大?
题型:不详难度:| 查看答案
如图所示,固定在水平面上的光滑平行金属导轨,间距为L,右端接有阻值为R的电阻,空间存在在方向竖直、磁感应强度为B的匀强磁场.质量为m、电阻为r的导体棒ab与固定弹簧相连,放在导轨上.初始时刻,弹簧恰处于自然长度.给导体棒水平向右的初速度v0,导体棒开始沿导轨往复运动,在此过程中,导体棒始终与导轨垂直并保持良好接触.已知导体棒的电阻r与定值电阻R的阻值相等,不计导轨电阻,则下列说法中正确的是(  )
A.导体棒开始运动的初始时刻受到的安培力向左
B.导体棒开始运动的初始时刻导体棒两端的电压U=BLv0
C.导体棒开始运动后速度第一次为零时,系统的弹性势能Ep=
1
2
m
v20
D.金属棒最终会停在初始位置,在金属棒整个运动过程中,电阻R上产生的焦耳热Q=
1
4
m
v20

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.