当前位置:高中试题 > 数学试题 > 离散型随机变量均值与方差 > 某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作; 其中6道备选题中考生甲有4题能正确完成,2题不...
题目
题型:不详难度:来源:
某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作; 其中6道备选题中考生甲有4题能正确完成,2题不能完成,则甲考生能正确完成题数的数学期望为               
答案
2
解析
解:因为设考生甲完成题数的取值为1,2,3,
  
,可知甲考生能正确完成题数的数学期望为2
核心考点
试题【某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作; 其中6道备选题中考生甲有4题能正确完成,2题不】;主要考察你对离散型随机变量均值与方差等知识点的理解。[详细]
举一反三
(本小题满分12分)
在平面内,不等式确定的平面区域为,不等式组确定的平面区域为.
(Ⅰ)定义横、纵坐标为整数的点为“整点”. 在区域任取3个整点,求这些整点中恰有2个整点在区域的概率;
(Ⅱ)在区域每次任取个点,连续取次,得到个点,记这个点在区域的个数为,求的分布列和数学期望.
题型:不详难度:| 查看答案
. 设l为平面上过点(0,l)的直线,l的斜率等可能地取、0、,用ξ表示坐标原点到直线l的距离,则随机变量ξ的数学期望Eξ=_________.
题型:不详难度:| 查看答案
甲、乙二人进行一次围棋比赛,约定先胜局者获得这次比赛的胜利,比赛结束.假设在一局比赛中,甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.现知前局中,甲、乙各胜局,设表示从第局开始到比赛结束所进行的局数,则的数学期望为             
题型:不详难度:| 查看答案
某车站每天8∶00—9∶00,9∶00—10∶00都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为
到站时刻
8∶10
9∶10
8∶30
9∶30
8∶50
9∶50
概率



一旅客8∶20到车站,则它候车时间的数学期望为                   
题型:不详难度:| 查看答案
某工厂生产甲、乙两种产品,甲产品的一等品率为,二等品率为;乙产品的一等品率为,二等品率为.生产件甲产品,若是一等品,则获利万元,若是二等品,则亏损万元;生产件乙产品,若是一等品,则获利万元,若是二等品,则亏损
元.两种产品生产的质量相互独立.
(Ⅰ)设生产件甲产品和件乙产品可获得的总利润为(单位:万元),求的分布列;
(Ⅱ)求生产件甲产品所获得的利润不少于万元的概率.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.