当前位置:高中试题 > 数学试题 > 曲线与方程的应用 > 如图,已知椭圆x2a2+y2b2=1(a>b>0)的离心率为22,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(2+1),一等轴双曲线的顶...
题目
题型:不详难度:来源:
如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为


2
2
,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(


2
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
答案
(Ⅰ)由题意知,椭圆离心率为
c
a
=


2
2

a=


2
c
,又2a+2c=4(


2
+1)

所以可解得a=2


2
,c=2,所以b2=a2-c2=4,
所以椭圆的标准方程为
x2
8
+
y2
4
=1

所以椭圆的焦点坐标为(±2,0),
因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,
所以该双曲线的标准方程为
x2
4
-
y2
4
=1

(Ⅱ)设点P(x0,y0),
则k1=
y0
x0+2
,k2=
y0
x0-2

∴k1•k2=
y0
x0+2
y0
x0-2
=
y02
x02-4

又点P(x0,y0)在双曲线上,
x02
4
-
y02
4
=1
,即y02=x02-4,
∴k1•k2=
y02
x02-4
=1.
(Ⅲ)假设存在常数λ,使得得|AB|+|CD|=λ|AB|•|CD|恒成立,
则由(II)知k1•k2=1,
∴设直线AB的方程为y=k(x+2),则直线CD的方程为y=
1
k
(x-2),
由方程组





y=k(x+2)
x2
8
+
y2
4
=1
消y得:(2k2+1)x2+8k2x+8k2-8=0,
设A(x1,y1),B(x2,y2),
则由韦达定理得,x1+x2=
-8k2
1+2k2
x1x2=
8k2-8
2k2+1

∴AB=


1+k2


(x1+x2)2-4x1x2
=
4


2
(1+k2)
2k2+1

同理可得CD=


1+(
1
k
)
2


(x1+x2)2-4x1x2
=
4


2
(1+
1
k2
)
2
1
k2
+1
=
4


2
(1+k2)
k2+2

∵|AB|+|CD|=λ|AB|•|CD|,
∴λ=
1
|AB|
+
1
|CD|
=
4


2
(1+k2)
2k2+1
-
4


2
(1+k2)
k2+2
=
3+3k2
4


2
(k2+1)
=
3


2
8

∴存在常数λ=
3


2
8
,使得|AB|+|CD|=λ|AB|•|CD|恒成立.
核心考点
试题【如图,已知椭圆x2a2+y2b2=1(a>b>0)的离心率为22,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(2+1),一等轴双曲线的顶】;主要考察你对曲线与方程的应用等知识点的理解。[详细]
举一反三
已知△ABC中,B(-2,0),C(2,0),△ABC的周长为12,动点A的轨迹为曲线E.
(1)求曲线E的方程;
(2)设P、Q为E上两点,


OP


OQ
=0
,过原点O作直线PQ的垂线,垂足为M,证明|OM|为定值.
题型:不详难度:| 查看答案
直线x=ky+3与双曲线
x2
9
-
y2
4
=1
只有一个公共点,则k的值有(  )
A.1个B.2个C.3个D.无数多个
题型:不详难度:| 查看答案
已知直角坐标平面内点A(x,y)到点F1(-1,0)与点F2(1,0)的距离之和为4.
(1)试求点A的轨迹M的方程;
(2)若斜率为
1
2
的直线l与轨迹M交于C、D两点,点P(1,
3
2
)
为轨迹M上一点,记直线PC的斜率为k1,直线PD的斜率为k2,试问:k1+k2是否为定值?请证明你的结论.
题型:不详难度:| 查看答案
过动点M(a,0)且斜率为1的直线l与抛物线y2=2px(p>0)交于不同的两点A、B,试确定实数a的取值范围,使|AB|≤2p.
题型:不详难度:| 查看答案
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=


6
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为


3
2

(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.