当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数f(x)=mx3-x2+nx+13(m、n∈R).(1)若函数f(x)在x=-2与x=1时取得极值,求m、n的值;(2)当m=n=0时,若f(x)在闭区...
题目
题型:不详难度:来源:
已知函数f(x)=mx3-x2+nx+13(m、n∈R).
(1)若函数f(x)在x=-2与x=1时取得极值,求m、n的值;
(2)当m=n=0时,若f(x)在闭区间[a,b](a<b)上有最小值4a,最大值4b,求区间[a,b].
答案
解(1)f′(x)=3mx2-2x+n,由题意知-2和1是方程f′(x)=0的两根,所以-2+1=
2
3m
,-2×1=
n
3m
,解得m=-
2
3
,n=4.
(2)当m=n=0时,f(x)=-x2+13.
①若a<b≤0,因为f(x)在[a,b]上单调递增,所以f(a)=4a,f(b)=4b,即





-a2+13=4a
-b2+13=4b

所以a,b是方程x2+4x-13=0的两个不等实根,但此方程两根异号,与a<b≤0矛盾,此时无解;
②若0≤a<b,f(x)在[a,b]上单调递减,
所以f(a)=4b,f(b)=4a,即





-a2+13=4b
-b2+13=4a
,解得a=1,b=3,
所以[a,b]=[1,3];
③若a<0<b,f(x)在[a,0]上单调递增,在[0,b]上单调递减,
所以f(x)max=f(0)=13=4b,b=
13
4
,f(b)=f(
13
4
)=-(
13
4
)2
+13>0,
因a<0,最小值4a<0,所以f(x)在x=a是取得最小值4a,即-a2+13=4a,解得a=-2-


17

此时[a,b]=[-2-


17
13
4
],
综上所求区间为[1,3]或[-2-


17
13
4
].
核心考点
试题【已知函数f(x)=mx3-x2+nx+13(m、n∈R).(1)若函数f(x)在x=-2与x=1时取得极值,求m、n的值;(2)当m=n=0时,若f(x)在闭区】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
若函数f(x)的导函数f′(x)=x2-4x+3,则函数f(x+1)的单调递减区间是(  )
A.(0,2)B.(1,3)C.(-4,-2)D.(-3,-1)
题型:柳州三模难度:| 查看答案
已知函数f(x)=ax2+x-xlnx(a>0).
(1)若函数满足f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围;
(2)若函数f(x)在定义域上是单调函数,求实数a的取值范围;
(3)当
1
e
<x<y<1
时,试比较
y
x
1+lny
1+lnx
的大小.
题型:不详难度:| 查看答案
已知函数f(x)=lnx-
1
2
ax2-2x

(1)若函数f(x)在x=2处取得极值,求实数a的值;
(2)若函数f(x)在定义域内单调递增,求实数a的取值范围.
题型:不详难度:| 查看答案
已知函数y=f(x)=ln(kx+
1
x
),(k>0)在x=1处取得极小值.
(1)求k的值;
(2)若f(x)在(
1
2
,f(
1
2
))处的切线方程式为y=g(x),求证当x>0时,曲线y=f(x)不可能在直线y=g(x)的下方.
题型:不详难度:| 查看答案
设函数f(x)=x2-18lnx在区间[m-1,m+1]上单调递减,则实数m的取值范围是(  )
A.m≤2B.m≥4C.0<m≤3D.1<m≤2
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.