当前位置:高中试题 > 数学试题 > 导数的意义 > 已知函数f(x)=ln(1+ex)-x(x∈R)有下列性质:“若x∈[a,b],则存在x0∈(a,b),使得f(b)-f(a)b-a=f′(x0)”成立.(1)...
题目
题型:不详难度:来源:
已知函数f(x)=ln(1+ex)-x(x∈R)有下列性质:“若x∈[a,b],则存在x0∈(a,b),使得
f(b)-f(a)
b-a
=f′(x0)
”成立.
(1)利用这个性质证明x0唯一;
(2)设A、B、C是函数f(x)图象上三个不同的点,试判断△ABC的形状,并说明理由.
答案
(1)证明:假设存在x0x0 ∈(a,b),且在x0x0 ,使得
f(b)-f(a)
b-a
=f′(x0)

f(b)-f(a)
b-a
=f′(x0)
,∵f′(x0)=f′(x0)
∴f′(x)=
ex
1+ex
-1=-
1
1+ex
,记g(x)=f′(x)=-
1
1+ex
,则g′(x)=
ex
(1+ex)2
>0,f′(x)是[a,b]上的单调递增函数,
∴所以x0=x0 ,与x0x0 矛盾,所以x0是唯一的.
(2)设A(x1,y1),B(x2,y2)C(x3,y3)且x1<x2<x 3
f′(x)=
-1
1+ex
<0
,∴f(x)是R上的单调减函数.∴f(x1)>f(x2)>f(x3).


BA
=(x1-x2,f(x1)-f(x1)),


BC
=(x3-x2,f(x3)-f(x2))



BA


BC
=(x1-x2)(x3-x2)+(f(x1)-f(x2))(f(x3)-f(x2))

∵x1-x2<0,x3-x2>0,f(x1)-f(x2)>0,f(x3)-f(x2)<0,∴


BA


BC
<0

∴cosB<0,∠B为钝角,∴△ABC为钝角三角形.
核心考点
试题【已知函数f(x)=ln(1+ex)-x(x∈R)有下列性质:“若x∈[a,b],则存在x0∈(a,b),使得f(b)-f(a)b-a=f′(x0)”成立.(1)】;主要考察你对导数的意义等知识点的理解。[详细]
举一反三
已知函数f(x)=x(x-a)(x-b),其中0<a<b.
(1)设f(x)在x=s和x=t处取得极值,其中s<t,求证:0<s<a<t<b;
(2)设A(s,f(s)),B(t,f(t)),求证:线段AB的中点C在曲线y=f(x)上;
(3)若a+b<2
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:广州二模难度:| 查看答案
题型:浙江难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.


2
函数f(x)=|x|,在x=0处(  )
A.无定义B.极限不存在C.不连续D.不可导
已知函数f(x)=xex(e为自然对数的底).
(1)求函数f(x)的单调递增区间;
(2)求曲线y=f(x)在点(1,f(1))处的切线方程.
设曲线y=e-x(x≥0)在点M(t,c-1c)处的切线l与x轴y轴所围成的三角表面积为S(t).
(Ⅰ)求切线l的方程;
(Ⅱ)求S(t)的最大值.
定义在R上的可导函数f(x)满足f(-x)=f(x),f(x-2)=f(x+2),且当x∈[0,2]时,f(x)=ex+
1
2
xf(0)
,则f(
7
2
)
f(
16
3
)
的大小关系是(  )
A.f(
7
2
)>f(
16
3
)
B.f(
7
2
)=f(
16
3
)
C.f(
7
2
)<f(
16
3
)
D.不确定