当前位置:高中试题 > 数学试题 > 函数的零点 > 已知n∈N*,设函数fn(x)=1-x+x22-x33+…-x2n-12n-1,x∈R.(1)求函数y=f2(x)-kx(k∈R)的单调区间;(2)是否存在整数...
题目
题型:解答题难度:一般来源:广州一模
已知n∈N*,设函数fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函数y=f2(x)-kx(k∈R)的单调区间;
(2)是否存在整数t,对于任意n∈N*,关于x的方程fn(x)=0在区间[t,t+1]上有唯一实数解?若存在,求t的值;若不存在,说明理由.
答案
(1)因为y=f2(x)-kx=1-x+
x2
2
-
x3
3
-kx,
所以y′=-1+x-x2-k=-(x2-x+k+1),
方程x2-x+k+1=0的判别式△=(-1)2-4(k+1)=-3-4k,
当k≥-
3
4
时,△≤0,y′=-(x2-x+k+1)≤0,
故函数y=f2(x)-kx在R上单调递减;
当k<-
3
4
时,方程x2-x+k+1=0的两根为x1=
1-


-3-4k
2
x2=
1+


-3-4k
2

则x∈(-∞,x1)时,y′<0,x∈(x1,x2)时,y′>0,x∈(x2,+∞)时,y′<0,
故函数y=f2(x)-kx(k∈R)的单调递减区间为(-∞,x1)和(x2,+∞),单调递增区间为(x1,x2);
(2)存在t=1,对于任意n∈N*,关于x的方程fn(x)=0在区间[t,t+1]上有唯一实数解,理由如下:
当n=1时,f1(x)=1-x,令f1(x)=1-x=0,解得x=1,
所以关于x的方程f1(x)=0有唯一实数解x=1;
当n≥2时,由fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1

得fn′(x)=-1+x-x2+…+x2n-3-x2n-2
若x=-1,则f′n(x)=f′n(-1)=-(2n-1)<0,
若x=0,则f′n(x)=-1<0,
若x≠-1且x≠0时,则f′n(x)=-
x2n-1+1
x+1

当x<-1时,x+1<0,x2n-1+1<0,f′n(x)<0,
当x>-1时,x+1>0,x2n-1+1>0,f′n(x)<0,
所以f′n(x)<0,故fn(x)在(-∞,+∞)上单调递减.
因为fn(1)=(1-1)+(
1
2
-
1
3
)+(
1
4
-
1
5
)+…+(
1
2n-2
-
1
2n-1
)>0,
fn(2)=(1-2)+(
22
2
-
23
3
)+(
24
4
-
25
5
)+…+(
22n-2
2n-2
-
22n-1
2n-1

=-1+(
1
2
-
2
3
)•22+(
1
4
-
2
5
)•24+…+(
1
2n-2
-
2
2n-1
)•22n-2

=-1-
1
2•3
•22-
3
4•5
24
-…-
2n-3
(2n-2)(2n-1)
22n-2
<0,
所以方程fn(x)=0在[1,2]上有唯一实数解,
综上所述,对于任意n∈N*,关于x的方程fn(x)=0在区间[1,2]上有唯一实数解,所以t=1.
核心考点
试题【已知n∈N*,设函数fn(x)=1-x+x22-x33+…-x2n-12n-1,x∈R.(1)求函数y=f2(x)-kx(k∈R)的单调区间;(2)是否存在整数】;主要考察你对函数的零点等知识点的理解。[详细]
举一反三
已知函数f(x)=cos(ωx+φ)(ω>0,π≤φ<2π)为偶函数,且其图象上相邻最高点与最低点之间的距离为


4+π2

(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[0,4π]内的所有零点之和.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
1
2
x-cosx则方程f(x)=
π
4
所有根的和为______.
题型:填空题难度:一般| 查看答案
设函数f(x)=
1
3
x3+
a-1
2
x2-ax+a
,其中a>0.
(1)求函数f(x)的单调区间;
(2)若方程f(x)=0在(0,2)内恰有两个实数根,求a的取值范围;
(3)当a=1时,设函数f(x)在[t,t+2](t∈(-3,-2))上的最大值为H(t),最小值为h(t),记g(t)=H(t)-h(t),求函数g(t)的最小值.
题型:解答题难度:一般| 查看答案
函数f(x)=lnx+2x的零点个数是(  )
A.0B.1C.2D.3
题型:单选题难度:一般| 查看答案
设函数f(x)=x2+aln(x+1)有两个极值点x1,x2,且x1<x2
(1)求实数a的取值范围;
(2)当a=
3
8
时,判断方程f(x)=-
1
4
的实数根的个数,并说明理由.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.