当前位置:高中试题 > 数学试题 > 函数的奇偶性与周期性 > 已知函数f(x)=ax2+bx+1(a≠0)对于任意x∈R都有f(1+x)=f(1-x),且函数y=f(x)+2x为偶函数;函数g(x)=1-2x.(I) 求函...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=ax2+bx+1(a≠0)对于任意x∈R都有f(1+x)=f(1-x),且函数y=f(x)+2x为偶函数;函数g(x)=1-2x
(I) 求函数f(x)的表达式;
(II) 求证:方程f(x)+g(x)=0在区间[0,1]上有唯一实数根;
(III) 若有f(m)=g(n),求实数n的取值范围.
答案
(I)∵对于任意x∈R都有f(1+x)=f(1-x),
∴函数f(x)的对称轴为x=1,得b=-2a.
又函数y=f(x)+2x=ax2+(b+2)x+1为偶函数,∴b=-2,从而可得a=1.
∴f(x)=x2-2x+1=(x-1)2
(II)证明:设h(x)=f(x)+g(x)=(x-1)2+1-2x
∵h(0)=2-20=1>0,h(1)=-1<0,∴h(0)h(1)<0.
所以函数h(x)在区间[0,1]内必有零点,
又∵(x-1)2,-2x在区间[0,1]上均单调递减,
所以h(x)在区间[0,1]上单调递减,
∴h(x)在区间[0,1]上存在唯一零点.
故方程f(x)+g(x)=0在区间[0,1]上有唯一实数根.
(III)由题可知∴f(x)=(x-1)2≥0.g(x)=1-2x<1,
若有f(m)=g(n),则g(n)∈[0,1),
则1-2n≥0,解得 n≤0.
故n的取值范围是n≤0.
核心考点
试题【已知函数f(x)=ax2+bx+1(a≠0)对于任意x∈R都有f(1+x)=f(1-x),且函数y=f(x)+2x为偶函数;函数g(x)=1-2x.(I) 求函】;主要考察你对函数的奇偶性与周期性等知识点的理解。[详细]
举一反三
定义在R上的函数f(x)>0,对任意x,y∈R都有f(x+y)=f(x) f(y)成立,且当x>0时,f(x)>1.
(1)求f(0)的值;
(2)求证f(x)在R上是增函数;
(3)若f(k•3x)f(3x-9x-2)<1对任意x∈R恒成立,求实数k的取值范围.
题型:解答题难度:一般| 查看答案
若函数f(x)=
x
(x+1)(2x-a)
为奇函数,则a=______.
题型:填空题难度:一般| 查看答案
已知函数y=f(x),x∈N*,任取m,n∈N*,均有f(m+n)=f(m)+f(n)+4(m+n)-2成立,且f(1)=1,若p2-tp≤f(x)对任意的p∈[2,3],x∈[3,+∞)恒成立,则t的最小值为______.
题型:填空题难度:一般| 查看答案
若x>0,y>0,且


x
+


y
≤a


x+y
恒成立,则a的最小值是______.
题型:填空题难度:一般| 查看答案
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy,f(xy)=f(x)f(y)(x,y∈R),且当x≠0时,f(x)≠0.
(Ⅰ)求证:f(0)=0;    
(Ⅱ)证明:f(x)是偶函数,并求f(x)的表达式;
(III) 若f(x)+a>ax对任意x∈(1,+∞)恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.