当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 已知函数f(x)=x+x33…+x2m-12m-1,g(x)=x22+x44…+x2n2n,定义域为R,m,n∈N•,h1(x)=c+f(x)-g(x),h2(...
题目
题型:解答题难度:一般来源:不详
已知函数f(x)=x+
x3
3
…+
x2m-1
2m-1
,g(x)=
x2
2
+
x4
4
…+
x2n
2n
,定义域为R,m,n∈N,h1(x)=c+f(x)-g(x),h2(x)=c-f(x)+g(x)
(1)若n=1,m=2,求h1(x)的单调区间;若n=2,m=2,求h2(x)的最小值.
(2)(文科选做)若m=n,c=0时,令T(n)=h2(1),求T(n)的最大值.
    (理科选做)若m=n,c=0时,令T(n)=h1(1),求证:T(n)=
1
n+1
+
1
n+2
+…+
1
2n

(3)若m=n+1,c=1时,F(x)=h1(x+3)h2(x-2)且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,求b-a的最小值.
答案
(1)n=1,m=2,f(x)=x+
x3
3
,g(x)=
x2
2
,h1(x)=c+x-
x2
2
+
x3
3

h"(x)=1-x+x2>0,所以h1(x)在R上单调增;         (2分)
n=2,m=2,f(x)=x+
x3
3
,g(x)=
x2
2
+
x4
4
,h2(x)=c-x+
x2
2
-
x3
3
+
x4
4

h2"(x)=-1+x-x2+x3=(x-1)(1+x2),
当x<1时,h2"(x)<0,h2"(x)单调递减;当x>1时,h2"(x)>0,h2"(x)单调递增;
故x=1时,h2"(x)最小值为c-
7
12
.                    (5分)
(2)文科:m=n,c=0,
T(n)=h2(1)=-1+
1
2
-
1
3
+…-
1
2n-1
+
1
2n

T(n+1)=h2(1)=-1+
1
2
-
1
3
+…-
1
2n-1
+
1
2n
-
1
2n+1
+
1
2n+2

知T(n+1)<T(n),故n=1时,T(n)最大为-
1
2

理科:m=n,c=0,T(n)=h1(1)=1-
1
2
+
1
3
+…
1
2n-1
-
1
2n

①当n=1时,左边T(1)=1-
1
2
=
1
2
,右边=
1
2
;成立
②假设n=k时成立,则有
T(k)=1-
1
2
+
1
3
+…
1
2k-1
-
1
2k

T(k+1)=1-
1
2
+
1
3
+…
1
2k-1
-
1
2k
+
1
2k+1
-
1
2k+2

=T(k)+
1
2k+1
-
1
2k+2
=
1
k+1
+
1
k+2
+…+
1
2k
+
1
2k+1
-
1
2
1
k+1

=
1
k+2
+…+
1
2k
+
1
2k+1
+
1
2k+2

故当n=k+1时也成立.
综上所述,等式成立.                                           (11分)
(3)m=n+1,c=1,h1(x)=1+x-
x2
2
+
x3
3
-…-
x2n
2n
+
x2n+1
2n+1
,(13分)
h
 ′1
(x)=1-x+x2-…-x2n-1+x2n
=





1+x2n+1
1+x
,x≠-1
2n+1,x=-1

当x≥0时,h
 ′1
(x)>0;当-1<x<0时,h
 ′1
(x)>0;当x<-1时,h
 ′1
(x)>0,故函数h
 ′1
(x)为R上的增函数,于是函数f(x)在R上最多只有一个零点.因h1(0)=1>0,h1(-1)=(1-1)+(-
1
2
+
1
3
)+…+(-
1
2n
+
1
2n+1
)<0,故h1(0)h1(-1)<0,
因而h1(x)在R上唯一零点在区间(-1,0)上,(15分)
于是h1(x+2)的唯一零点在区间(-3,-2)上.
同理可得,函数h2(x)为R上的减函数,于是函数h2(x)在R上最多只有一个零点.
又h2(1)=(1-1)+(
1
2
-
1
3
)+…+(
1
2n
-
1
2n+1
)>0,
h2(2)=(1-2)+22
1
2
-
2
3
)+24
1
4
-
2
5
)+…+22n
1
2n
-
2
2n+1
)<0,于是h2(1)h2(2)<0,因而h2(x)在R上唯一零点在区间(1,2)上,于是h2(x-2)的唯一零点在区间(3,4)上.
所以,F(x)的两零点落在区间[-3,4]上,b-a的最小值为7.       (18分)
核心考点
试题【已知函数f(x)=x+x33…+x2m-12m-1,g(x)=x22+x44…+x2n2n,定义域为R,m,n∈N•,h1(x)=c+f(x)-g(x),h2(】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知函数f(x)=asinx+btanx+1,满足f(1)=6,则f(-1)=______.
题型:填空题难度:一般| 查看答案
购买某种汽车的费用为15万元,每年应交保险费、养路费及汽油费合计为1万2千元.汽车的年平均维修费如下:第一年3千元,第二年6千元,第三年9千元,依次成等差数列逐年递增,这种汽车使用多少年报废最合算(即使用多少年的年平均费用最少)?
题型:解答题难度:一般| 查看答案
已知函数f(x)=





f(x+1)(x<4)
2x(x≥4)
,则f(log23)=______.
题型:填空题难度:简单| 查看答案
对于给定的正数K和R上的函数f(x),定义R上的函数fk(x):fk(x)=





f(x)   f(x)≤k
k      f(x)>k
 取函数f(x)=3-丨x丨,则当k=
1
3
时,函数fk(x)的单调增区间为______.
题型:填空题难度:一般| 查看答案
已知定义域为R的奇函数f(x)=
-2x+b
2x+1+a

(Ⅰ)求a,b的值
(Ⅱ)判定函数f(x)的单调性,并用定义证明.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.