当前位置:高中试题 > 数学试题 > 函数的单调性与最值 > 设函数f(x)=ax2+1bx+c是奇函数,其中a,b,c∈N,f(1)=2,f(2)<3.(Ⅰ)求a,b,c的值;(Ⅱ)判断并证明f(x)在(-∞,-1]上的...
题目
题型:解答题难度:一般来源:不详
设函数f(x)=
ax2+1
bx+c
是奇函数,其中a,b,c∈N,f(1)=2,f(2)<3.
(Ⅰ)求a,b,c的值;
(Ⅱ)判断并证明f(x)在(-∞,-1]上的单调性.
答案
(Ⅰ)由f(x)=
ax2+1
bx+c
是奇函数得:f(-x)+f(x)=0,∴
ax2+1
bx+c
+
ax2+1
-bx+c
=0
,∴(ax2+1)
2c
(bx+c)(-bx+C)
=0

解得 c=0,即f(x)=
ax2+1
bx

又f(1)=2,∴2=
a+1
b
  , 2b=a+1

又 f(2)<3,可得
4a+1
2b
<3
4a+1
a+1
<3
,∴-1<a<2,
∵a∈N,∴a=0或1.
若a=0,则b=
1
2
∉N
(舍去),∴a=b=1,c=0.
(Ⅱ)由(Ⅰ)知,f(x)=
x2+1
x
=x+
1
x
,f(x)在(-∞,-1]上单调递增.
下用定义证明:设x1<x2≤-1,则:f(x1)-f(x2)=x1+
1
x1
-(x2+
1
x2
)
=x1-x2+
x2-x1
x1x2
=(x1-x2)(1-
1
x1x2
)

因为x1<x2≤-1,x1-x2<0,1-
1
x1x2
>0

∴f(x1)-f(x2)<0,故f(x)在(-∞,-1]上单调递增.
核心考点
试题【设函数f(x)=ax2+1bx+c是奇函数,其中a,b,c∈N,f(1)=2,f(2)<3.(Ⅰ)求a,b,c的值;(Ⅱ)判断并证明f(x)在(-∞,-1]上的】;主要考察你对函数的单调性与最值等知识点的理解。[详细]
举一反三
已知定义在集合A上的两个函数f(x)=x2+1,g(x)=4x+1.
(1)若A={x|0≤x≤4},x∈R,分别求函数f(x),g(x)的值域;
(2)若对于集合A中的任意一个z,都有f(x)=g(x),求集合A
题型:解答题难度:一般| 查看答案
若函数y=|2x+c|是区间(-∞,1]上的单调函数,则实数c的取值范围是______.
题型:填空题难度:一般| 查看答案
函数y=x2+


x2-1
的最小值为(  )
A.0B.
3
4
C.1D.
3
2
题型:单选题难度:一般| 查看答案
若函数f(x)=
1
2+log2x
,则该函数在(1,+∞)上(  )
A.单调递减,无最小值B.单调递减,有最小值
C.单调递增,无最大值D.单调递增,有最大值
题型:单选题难度:简单| 查看答案
已知f(x)=
1
x-1
,x∈[2,6]

(1)证明:f(x)是定义域上的减函数;   (2)求f(x)的最大值和最小值.
题型:解答题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.