当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙...
题目
题型:不详难度:来源:
已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?
答案
解:(1)由题意,得 解得  
∴二次函数的关系式是y=x2-1.                 
(2)设点P坐标为(x,y),则当⊙P与两坐标轴都相切时,有y=±x.
由y=x,得x2-1=x,即x2-x-1=0,解得x=
由y=-x,得x2-1=-x,即x2+x-1=0,解得x=
∴⊙P的半径为r=|x|=.                       
(3)设点P坐标为(x,y),∵⊙P的半径为1,
∴当y=0时,x2-1=0,即x=±1,即⊙P与y轴相切,
又当x=0时,y=-1,
∴当y>0时, ⊙P与y相离;
当-1≤y<0时, ⊙P与y相交.
解析
(1)把A(-1,0)、B(1,0)代入y=x2+bx+c得到一个关于b、c的方程组,求出方程组的解即可得出二次函数的关系式;
(2)设点P坐标为(x,y),则当⊙P与两坐标轴都相切时,有y=±x,把y=±x分别代入由(1)求出的二次函数的关系式,求出x的值,即可得到半径r的值;
(3)设点P坐标为(x,y),先求出⊙P与y轴相切时x=±1,再根据圆与直线的位置关系的性质(r<d时相离,r>d相交)判断即可.
核心考点
试题【已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知:关于的方程有两个不相等的实数根.
(1)求的取值范围;
(2)抛物线轴交于两点.若且直线:经过点,求抛物线的函数解析式;
(3)在(2)的条件下,直线:绕着点旋转得到直线,设直线轴交于点,与抛物线交于点不与点重合),当时,求的取值范围.
题型:不详难度:| 查看答案
已知二次函数中,m为不小于0的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边.
(1)求这个二次函数的解析式;
(2)点C是抛物线与轴的交点,已知AD=AC(D在线段AB上),有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度移动,同时,另一动点Q从点C出发,以某一速度沿线段CB移动,经过t秒的移动,线段PQ被CD垂直平分,求t的值;
(3)在(2)的情况下,求四边形ACQD的面积.
题型:不详难度:| 查看答案
如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.

(1)填空:点B的坐标为(_       ),点C的坐标为(_       );
(2)连接OA,若△OAC为等腰三角形.
①求此时抛物线的解析式;
②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
题型:不详难度:| 查看答案
如图,已知抛物线经过点(0,-3),且该抛物线与x轴的一个交点在(1,0)和(3,0)之间,那么b的取值范围是                 
题型:不详难度:| 查看答案
已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD的面积的最大值;
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.