当前位置: > 高一平面向量数量积题...
题目
高一平面向量数量积题
已知向量OA=a,向量OB=b,在平面AOB上,P为线段AB垂直平分线上任意一点,C为AB的中点,向量OP=p,若|a|=3,|b|=2,则p*(a-b)的值为?

提问时间:2020-12-15

答案
p=OP=OC+CP=(a+b)/2+CP 注意CP⊥(a-b)
p·(a-b)=[(a+b)/2+CP]·(a-b)=(a²-b²)/2=5/2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.