当前位置: > 求函x(sinx)平方的定积分,下限为0上限为1...
题目
求函x(sinx)平方的定积分,下限为0上限为1

提问时间:2020-10-31

答案
答:
因为∫xsin²x dx
=∫x(1-cos2x)/2 dx
=1/2∫x(1-cos2x) dx
=1/2∫x-xcos2x dx
=1/2(∫x dx - ∫xcos2x dx)
=x²/4-1/4xsin2x+1/4∫sin2x dx
=x²/4-1/4xsin2x-1/8cos2x + C
所以∫(0到1)xsin²x dx
=x²/4-1/4xsin2x-1/8cos2x |(0到1)
=1/4-sin2/4-cos2/8-(0-0-1/8)
=3/8-sin2/4-cos2/8
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.