当前位置: > 已知函数f(x)=(x²+ax+a)e的-x次方(a≤2,x∈R)...
题目
已知函数f(x)=(x²+ax+a)e的-x次方(a≤2,x∈R)
是否存在实数a,使f(x)的极大值喂3?若存在,求出a的值,若不存在,请说明理由

提问时间:2020-08-10

答案
求函数极值点,先求驻点,即令f'(x)=0,
这里f'(x)=(2x+a-x^2-ax-a)*e^(-x)=[-x^2+(2-a)x]*e^(-x)=0
所以x=0,或x=2-a
极小值点f(0)=a,
极大值点f(2-a)=(4-a)*e^(a-2)
这时令右边为关于a的函数,g(a)=(4-a)*e^(a-2)
g'(a)=(3-a)*e^(a-2),令它=0,得a=3时,当a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.