当前位置:高中试题 > 数学试题 > 函数的单调性与导数 > 已知函数的图象过坐标原点O,且在点(﹣1,f(﹣1))处的切线的斜率是﹣5.(1)求实数b,c的值; (2)求f(x)在区间[﹣1,2]上的最大值;(3)对任意...
题目
题型:江西省月考题难度:来源:
已知函数的图象过坐标原点O,且在点(﹣1,f(﹣1))处的切线的斜率是﹣5.
(1)求实数b,c的值; 
(2)求f(x)在区间[﹣1,2]上的最大值;
(3)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?说明理由.
答案
解:(1)当x<1时,f(x)=﹣x3+x2+bx+c,则f"(x)=﹣3x2+2x+b. 依题意得:


解得b=c=0
(2)由(1)知,
①当﹣1≤x<1时,
令f"(x)=0得
当x变化时,f"(x),f(x)的变化情况如下表:

②当1≤x≤2时,f(x)=alnx.
当a≤0时,f(x)≤0,f(x)最大值为0;
当a>0时,f(x)在[1,2]上单调递增.
∴f(x)在[1,2]最大值为aln2.
综上,当aln2≤2时,即时,f(x)在区间[﹣1,2]上的最大值为2;
当aln2>2时,即时,f(x)在区间[﹣1,2]上的最大值为aln2.
(3)假设曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.
不妨设P(t,f(t))(t>0),则Q(﹣t,t3+t2),显然t≠1
∵△POQ是以O为直角顶点的直角三角形,

即﹣t2+f(t)(t3+t2)=0(*)
若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若0<t<1,则f(t)=﹣t3+t2
代入(*)式得:﹣t2+(﹣t3+t2)(t3+t2)=0
即t4﹣t2+1=0,而此方程无解,因此t>1.
此时f(t)=alnt,代入(*)式得:
﹣t2+(alnt)(t3+t2)=0
(**)
令h(x)=(x+1)lnx(x≥1),则

∴h(x)在[1,+∞)上单调递增,
∵t>1
∴h(t)>h(1)=0,
∴h(t)的取值范围是(0,+∞).
∴对于a>0,方程(**)总有解,即方程(*)总有解.
核心考点
试题【已知函数的图象过坐标原点O,且在点(﹣1,f(﹣1))处的切线的斜率是﹣5.(1)求实数b,c的值; (2)求f(x)在区间[﹣1,2]上的最大值;(3)对任意】;主要考察你对函数的单调性与导数等知识点的理解。[详细]
举一反三
设函数f(x)=(x﹣1)2+blnx,其中b为常数.
(1)当时,判断函数f(x)在定义域上的单调性;
(2)若函数f(x)的有极值点,求b的取值范围及f(x)的极值点;
(3)求证对任意不小于3的正整数n,不等式都成立.
题型:江西省月考题难度:| 查看答案
,g(x)=ax+5﹣2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
题型:江西省月考题难度:| 查看答案
定义在R上的函数f(x)满足f(4)=1,f"(x)为f(x)的导函数,已知y=f"(x)的图象如图所示,若两个正数a,b满足的取值范围是
[     ]
A.
B.
C.
D.(﹣∞,3)
题型:宁夏自治区期末题难度:| 查看答案
设函数f(x)=x3+ax2﹣9x﹣1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:
(Ⅰ)a的值;
(Ⅱ)函数f(x)的单调区间.
题型:山东省月考题难度:| 查看答案
已知函数,且.(e是自然对数的底数)
(1)求a与b的关系式;
(2)若f(x)在其定义域内为单调函数,求a的取值范围.
题型:江西省月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.